LDRA

Software Technology

Verification of Airborne Software
in Compliance with DO-178C

Working with the Airborne Software Industry
to Meet the Challenges of Achieving
Cost-effective Certification

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

LDRA Ltd 1 Verification of Airborne Software in Compliance with DO-178C

Contents
BaACKGIOUNA. ... 3
DO-178C ProCeSS OBJECHIVES oo 4
DO-178C Section 5.0: SOFTWARE DEVELOPMENT PROCESSES ... 4
DO-178C Section 6.0: SOFTWARE VERIFICATION PROCESSESS 6
DO-178C Structural Coverage Analysis ObjeCtiVeS e 9
Demonstrating Data Coupling and Control COUPLING. ... 11
CONEIOL COUPLINE e 12
(D) = B G0 YU o] 11 o= 12
Object-Oriented TECANOLOZY 14
OO0 ObJOCEIVES e L
Other CONSIA@IAIONS ... e 16
Source to Object Traceability............o e 16
Traceability t0 CHild ClAaSSES. .. oo 16
Coding Standard for object-oriented [@NGUAZES ... 16
Challenges with structural coverage and loe-level teSting ... 16
Model-Based DeVEIOPMENT e 16
Partial Credit in the Model . e 17
Verification on Target ReQUITEA e 18
TOOL QUL CATTON e 19
L[0T TR T=] (=Y € e YOO 20
AT a Y O =T OO 21

LDRA Ltd 2 Verification of Airborne Software in Compliance with DO-178C

LDRA

In response to the increased use of software in airborne systems, the Radio Technical Commission for
Aeronautics organization® (now known as RTCA, Inc.) in collaboration with EUROCAE?, created the guidance
document DO-178 “Software Considerations in Airborne Systems and Equipment Certification.” This
document has come to be accepted as the international certification standard for airborne software.
Originally published in 1982, re-written in 1992 as DO-178B and significantly extended in 2011 to address
modern technologies and methodologies in DO-178C, the standard reflects the experience accrued to meet
today’s aviation industry needs.

Background

LDRA has participated extensively on both the DO-178B%and DO-178C*committees over nearly two
decades. Mike Hennell, LDRA’s CEO, was instrumental in the inclusion of several test measurement
objectives in the standard, including those relating to structural coverage analysis. The LDRA tool suite®
was a forerunner in automated verification for certification to both the DO-178B standard for airborne
software systems, and to its companion standard, DO-278°for ground-based systems.

The DO-178C standard provides detailed guidance for the development and verification of safety critical
airborne software. In accordance with ARP 4754A¢, prior to system development, functional hazard
analyses and system safety assessments are performed to determine the contribution of the system to
potential failure conditions. The severity of failure conditions on the aircraft and its occupants are then
used to determine a Design Assurance Level (DAL), as shown in Figure 1.

DAL Failure Description
Condition
A Catastrophic Failure Conditions, which would result in multiple fatalities, usually with the loss of
the airplane.
B Hazardous Failure Conditions, which would reduce the capability of the airplane or the ability of
the flight crew to cope with adverse operating conditions to the extent that there would
be:

e A large reduction in safety margins or functional capabilities;

e Physical distress or excessive workload such that the flight crew cannot be relied
upon to perform their tasks accurately or completely, or

e Serious or fatal injury to a relatively small number of the occupants other than
the flight crew

C Major Failure Conditions which would reduce the capability of the airplane or the ability of the
crew to cope with adverse operating conditions to the extent that there would be, for
example, a significant reduction in safety margins or functional capabilities, a signifi-
cant increase in crew workload or in conditions impairing crew efficiency, or discomfort
to the flight crew, or physical distress to passengers or cabin crew, possibly including
injuries.

D Minor Failure Conditions which would not significantly reduce airplane safety, and which in-
volve crew actions that are well within their capabilities. Minor Failure Conditions may
include, for example, a slight reduction in safety margins or functional capabilities, a
slight increase in crew workload, such as routine flight plan changes, or some physical
discomfort to passengers or cabin crew.

E No effect Failure Conditions that would have no effect on safety; for example, Failure Condi-
tions that would not affect the operational capability of the airplane or increase crew
workload.

Figure 1: : Design Assurance Levels as described in DO-178C (Table 2-1)”

* http://www.rica.org/

2 https://www.eurocae.net/
3 http://www.rica.org/store_product.asp?prodid=581

4http://www.rica.org/store_product.asp?prodid=803

5 http://www.rica.org/store_product.asp?prodid=678%20%20

6 http://standards.sae.org/arp475a/
7Based on table 2-1 from RTCA DO-178C, Copyright ©2011 RTCA, Inc. All rights acknowledged

LDRA Ltd 3 Verification of Airborne Software in Compliance with DO-178C

The ARP 4754A development process then allocates the associated DALs to the subsystems that
implement the system’s electronic hardware and software requirements. D0O-178C establishes five
“software levels” and modulates objectives that must be satisfied. This means that the effort and expense
of producing a system critical to the continued safe operation of an aircraft (e.g. a flight control system) is
necessarily higher than that required to produce a system with only a minor impact on the aircraft in the
case of a failure (e.g. a bathroom smoke detector).

D0-178C covers the complete software lifecycle: planning, development and integral processes to ensure
correctness and robustness in the software. The integral processes include software verification, software
quality assurance, configuration management assurance and certification liaison with the regulatory
authorities.

The standards do not oblige developers to use analysis, test, and traceability tools in their work. However,
these tools improve efficiency in all but the most trivial projects to the extent that they have a significant
part to play in the achievement of the airworthiness objectives for airborne software throughout the
development lifecycle. Specialised tools exemplified by the LDRA tool suite are used to help achieve
DO-178C objectives including bi-directional traceability, test management, source code static analysis, and
dynamic analysis of both source and object code.

This document describes the key software development and verification processes of the standard and
to show how automation can help to lower the cost of development and verification and to ensure the
deployment of safety critical software.

DO-178B Process Objectives

D0-178C recognizes that software safety must be addressed systematically throughout the software life
cycle. This involves life cycle traceability, software design, coding, validation and verification processes
used to ensure correctness, control and confidence in the software.

Key elements of the DO-178C software life cycle include the practices of traceability and structural
coverage analysis. Bi-directional traceability must be established across the lifecycle, from system
requirements to software high-level requirements, from software high-level requirements to low-level
requirements, and through to test cases, test procedures and test results. Low-level requirements must
then be linked to the source code in which they are implemented. Structural coverage analysis (code
coverage, data coupling and control coupling) quantifies the extent to which the source code of a system
has been exercised by the testing process. Using these practices, it is possible to ensure that code has
been implemented to address every system requirement and that the implemented code has been tested
to completeness.

The use of software tools offers particularly significant benefits during software development and software
verification, discussed in sections 5.0 and 6.0 of the standard respectively.

DO-178C Section 5.0: SOFTWARE DEVELOPMENT PROCESSES

Five high-level processes are identified in the DO-178C SOFTWARE DEVELOPMENT PROCESSES section;
Software Requirements Process (5.1), Software Design Process (5.2), Software Coding Process (5.3),
Integration Process (5.4), and Software Development Process Traceability (5.5).

The ideal tools for requirements management (Section 5.1) depend largely on the scale of the
development. If there are few developers in a local office, a simple spreadsheet or Microsoft Word
document may suffice. Bigger projects, perhaps with contributors in geographically diverse locations, are
likely to benefit from an application lifecycle management tool such as IBM Rational DOORS?, Siemens
Polarion PLM?, or more generally, similar tools offering support for standard Requirements Interchange
Formats?®.

8 http://www.-03ibm.com/software/products/en/ratidoor

9 http://polarion.pim.automation.siemens.com/
10 http://www.omg.org/spec/ReqlF/

LDRA Ltd 4 Verification of Airborne Software in Compliance with DO-178C

LDRA

The products of the design phase (Section 5.2) potentially include Model Based Designs, spreadsheets,
textual documents and many other artefacts, and clearly a variety of tools can be involved in their
production. The management of the status of each of those elements and maintaining traceability between
requirements, these design artefacts, and subsequent development phases generally causes a project
management headache. This is addressed by section 5.5 of the standard, discussed later.

As part of Section 5.3, DO-178C specifies that software must meet certain software coding process
objectives. These objectives state the development of source code should implement low-level
requirements and conform to a set of software coding standards.

Further definition of the software coding standards is provided in Section 11.8 of DO-178C:

® Programming language(s) to be used and/or defined subset(s). For a programming language, establish
an approach to unambiguously define the syntax, the control behaviour, the data behaviour and side-
effects of the language. This may require limiting the use of some features of a language.

e Source code presentation standards including line length restriction, indentation, and blank line usage.

e Source code documentation standards, for example, name of author, revision history, inputs and
outputs, and affected global data.

e Naming conventions for components, subprograms, variables and constants.

e Conditions and constraints imposed on permitted coding conventions, such as the degree of coupling
between software components and the complexity of logical or numerical expressions and rationale for
their use.

e Constraints on the use of coding tools.

Static analysis tools automate the “inspection” of the source code, making compliance checking easier,
less error prone and more cost effective by comparing the code under review with the rules dictated by the
chosen a software coding standard (Figure 2). Non-conformances are highlighted as required by section
6.4.3d of the standard. The tool suite can also assess the complexity of the code under review to ensure
that it stays below a safe threshold for the system, and its data flow analysis facility can be used to identify
any uninitialized or unused variables and/or constants as specified by section 6.4.3.f.

~ & TunnelData:Cell:InitialiseCell

+% DU anomaly, variable value is not used. 2 Required 70D MISRA-C++:2008 0-1-6,0-1-9

#% Local variable should be declared const. 2 Required 93D MISRA-C++:2008 7-1-1

Array has decayed to pointer. : pLampTypelDs Required 5345 MISRA-C++:2008 5-2-12

Mo brackets to loop body. Required s MISRA-C++:2008 6-3-1

~ & TunnelData:Cell:SetEmergencyOutputLevel

#% DU anomaly, variable value is not used. 2 Required 0D MISRA-C++:2008 0-1-6,0-1-9

Local variable should be declared const. : ThisType Required EERY MISRA-C++:2008 7-1-1

+ Logical conjunctions need brackets, (analysed w. JSF++ AY) Required 495 MISRA-C++:2008 5-0-2,5-2-1
Expression needs brackets. (analysed w. JSF++ AV) Advisory 3615 MISRA-C++:2008 5-0-2

Figure 2: Checking for compliance with the MISRA C++:2008 coding standard using the LDRA tool suite

There are many pre-defined language subsets (sometimes called

“coding standards”) available for C, C++ and Ada languages Coding standards

(Sidebar), and nOthing to suggest that an in-house subset could There are many coding standards each
not be preferred. This could be established entirely from scratch, with differing attributes but nevertheless
or more pragmatically, based on an established subset with with strong similarities, especially when
modifications to suit a particular project. It is important that a referencing the same language. The most
deployed static analysis tool should be similarly flexible. popular standards include:

C C++
MISRA C:1998 MISRA C++:2008
MISRA C:2004 JSF++ AV

In section 5.5, DO-178C mandates that the correctness of the
requirements-based development and verification process is

determined by requirements coverage or traceability. This analysis MISRA C:2012 / HICs+
assures that requirements are bi-directionally associated between AMD1 /ADDz

system and high-level requirements, high-level and low-level CERT

requirements, and finally low-level requirements and source code. CWE

Static analysis doesn’t only provide a useful check against coding Ada Java
standards. It also reveals the underlying structure of the software, Ravenscar CWE
which is required to confirm that traceability. Spark CERTJ

LDRA Ltd 5 Verification of Airborne Software in Compliance with DO-178C

LDRA

If everything follows the development lifecycle in textbook fashion, that is perhaps a one-off, trivial task.
The requirements will never change and tests will never throw up a problem. But unhappily, that is rarely
the case.

Consider, then, what happens if a problem is highlighted during static analysis.

e Perhaps there is a contradiction in the requirements. If that is the case, the requirements will need to
change. But what other parts of the software are affected by that?

e Maybe there is a low-level requirement that is not traceable through to a high-level requirement. What
needs to change to resolve that?

e Maybe an end user has a new requirement. What impact will that have on established requirements,
design and source code?

Issues surrounding functionality are likely to be flushed out during dynamic analysis later in the life cycle,
meaning that this cause-and-effect puzzle becomes even more complex whenever something needs to
change.

The use of a requirements traceability/coverage and test management solution that is integrated with
code review, data and control coupling analysis, and low-level testing and code coverage tools takes

away the project management challenges associated with such complexity (Figure 3). It ensures that the
requirements traceability matrix even through disparate repositories and down to the source code and test
cases is a great deal simpler to manage, more cost effective, and permanently up-to-date.

Propect Source Configure View Webstitelinks Reports Project Baselime Anslysa Import Help

S B aEs s 4 X 3 5 0 @ 8 8 2 ctes v [bukdSunded Buldievumensed » @ &» N» 0O &
Relstorshps L
’ (0) Threw Level Requrements o Maponas 3 3
&. <> - Seect Noe ¥ (13)Requirements 1 < > - Select None v (J4)Regurements 2 < > - Seect Mo v (SE) Reguirements 3 < > - Seect None v (43) Mappings
B 5vs 0010 Dspiny (2 toten (IR0 Starting dizpiey sottware (1N ~ A A
o 5 HLR_0020, input cption photometer nom...
S 5v5.0030, Output Calculation , (1 Note) [HLR_0030, Input optsors photometer np S LLR 0030 Set Emergency output level
£ | 5v5.0040, Photometes, (1 Note) [HLR_0040, Input eptions exit % Fost_64 TunnelData:Lamp: Gethia.
8 5¥5.0050, Clesnliness factor [HLR_D050, input options days snce clesn. - “"‘-?'I Tunnell """'mp;oﬂhtm'
2 | B 5vS.0060, Lighting control unit.. & HLR_DO70, input options power failure Y3 LLR 0060, Get Larng Model Due © Flost 58 TunnelatacLompType:Ge.
- e - Fleat_62 TunnelData:LampType-Ge
[N S¥S_0070, Luminanes L\ HLR_D090, Despley totsl cell demand 3 R_0070, Get Larmp Model Gunde n Flo '5.. 'I'u e -y '1: P
o [5¥5_0080, Sirens and Signs, (1 Note) & HLR_0100, Displey Lumens {1 Nete S LLR 0080 Get Larmp Model Announcer : FI::_&TH::&D::: z;mﬂn: G]
- - - = o
- y 01" N LR) GetL .
8 lﬁ “5-? Failed P":t' Supply - "‘L:.?”? E‘""""‘fﬂ :"C“ . % LLF 0090 Get Lamp Model LightScio v Fioat_54 TunnelData: SystemData=G...
= L? SYS_0100, Lighting Adpustment _-‘ ML _:.,: lesnimesy n:-:v\c. actor.. © Fleat_64 TunneiData::SystemData-G...
] Eg S¥S_0110, Lamp output units __‘, HLR_0120, Tunnel Lighting Output Dema... & Sint_32 TunnelDeta:Lamp TypesGet
e bl . “Tn a3 - :
™ i - . - b
A) el g Software highJevel s] Software low-level o s
5 X : s ource code .
i System Requirements " requirements - L requirements
o __“ q v 1
s HOOTRSECTRIOUPOTTER. Lo v - C
iy HLR_0160, Lamnp Selecton (1 Nete LR_0160, Send Power to Lamp
- iy HLR_0170. Lamp Lighting Output Deman.. 0170 indtigise Lamp Attnbutes
o ~ QIEG T ¥ 32 118 2180 Lame Olictedd & TunneiDate:LampcLampl)
™ Regurement Body x Regqurement Body "I Eeguremert Sody x| v TunnefDats: Lampattnbutes:Lamp
- v TunneiDats:LampType-LampTypel):
The Turred L system shal be con! able va an | | Upon executon of the Tunnel ighting system A Cel sradl be rsTartaton w® revo tyDes of lamps,
ightng g
. external file and take nto sccount tunnel dmersons, software, the software shal read the Turrelm fie 20D P umens, 2ero MU Lmens, rero for
v TunnelData: Squanel Squarel
pored, waoryg for mprs and effoency factor ared guery e uner for an ot Condigurston fies e ool D, o 2o Sy P ool nite — e
o will provade the approprate data for the exampie
configuration of the system, s described n the
™ document Tunnel Lightng Cortral System Dvervew
- & TunnelDste: medel TunnelData-Ceil

Figure 3: Automating requirements traceability with the TBmanager component of the LDRA tool suite

DO-178C Section 6.0: SOFTWARE VERIFICATION PROCESSES

In contrast to static analysis, which can be thought of as an automated “inspection” of the source code,
dynamic analysis involves executing the Executable Object Code (EOC) piecemeal or in its entirety, using
a target environment representative of that to be deployed in the completed application. This execution is
used to provide evidence both of correct functionality, and of the parts of the code exercised (“structural
coverage”).

LDRA Ltd 6 Verification of Airborne Software in Compliance with DO-178C

LDRA

DO-178C discusses both of these concepts, identifying objectives to achieve test coverage of high and low
level requirements, and to achieve appropriate test coverage of both the software structure, and the data
and control coupling.

The “test cases and procedures” referenced in the standard could include low-level tests (sometimes
referred to as unit tests), integration tests, or system tests, and probably a combination of all three.

Low-level tests are designed to verify the implementation of low-level requirements. Test procedures

need to be authored, reviewed, and executed to ensure the software does not contain any undesired
functionality. Low-level tests can then be executed on the target hardware or simulated environment as
specified in the Software Verification Plan (SVP). Once the test procedures are executed actual outputs are
captured and compared with the expected results, and pass/fail results reported (Figure 4).

Software integration testing is designed to verify the interrelationships between the software components
with respect to both the requirements the software architecture. In practice, the mechanisms used for low-
level testing are often extended to use verify behaviour in a call tree.

| Source Sequence TestCate RunDewer StubMansgemens GlobslVarisbles Dictionsty DatremeTemt Retuls Cofigure View Website Help

0 E® EHx a8 AL BIODGEH BREBRERE SBEEAR

|

& X FieVew L
@ seal

File Explarer
- ibpeed
~ & Combined Coverage fun

w1 MrspeedCaloulstecpp

Refreshing Resuts deplay started
Refeshing Rests deolay frighed

Test Case View g X
Test Case Regressien P /F Procedure Object MName / Descri
1 PASS runfirspeedCommand
2 PASS runfirspeedCommand
3 PASS runfirspeedCommand
4 PASS runfirspeedCommand
5 PASS calculatedirspeed

6 PASS calculatedirspeed

7 PASS calculatedirspeed o

e L
Test Cate Regresucn P/ F Procedure Object Mame | Descrll B2 Proxeduse Calls Murrbses gl Call Type {) Parerneten HJRetuen Type {JMamespace 2 Clan
- calculatelanperd 1 intermal 5 v &) vaid

1 Pass
2 PASS
(1< Pass
4 PASS
5 Pass
& PASS
8
5

- deplayhaspeed Intermal 5 Ui woid

=
PASS
Pass

R
I DISPLAY.CMD cammand SUIG Input parsmeter applied through locel s

" Value Retained *** sirspeed SUR Input ghobel Vs
o0 auperd SAEZ Output global Co

| For Help, press £1

Figure 4: Automating low-level and integration testing with the TBrun component of the LDRA tool suite

Should changes become necessary — perhaps as a result of a failed dynamic test, or in response to a
requirement change - then all impacted low-level and integration tests would need to be re-run (regression
tested). These regression tests can be automated and systematically re-applied, as development
progresses, to ensure that new functionality does not compromise any that is established and proven.

Keeping track of the project status in such flux is challenging. Automating the maintenance of the bi-
directional relationship between the products of the different development phases saves a great deal of
time, and makes errors much less likely — not just as far the development of the requirements and source
code, but through to requirements-based testing and test coverage for both high and, where necessary,
low-level requirements.

LDRA Ltd 7 Verification of Airborne Software in Compliance with DO-178C

L3 system Level Requirements

0% Verified

13 Unverfied

g 5 o = = R
L3 High Level Tests L3 High Level Req][
gz@&mﬂed gzﬁ[t\g\gﬂd A AU U S | P — P..n...--
ems - e o | morpemt P ot Al cEe @ e e e e e X =a
0 \erffied 0 \erfied I
34 Unverfied 34 Unverified Bi-directional traceability and Automated Test
test coverage Case Execution
AN e on
‘[r.l Low Level Requi leuwlevelTaEn LS— Rening
P - Tt — L Sy S - - St ew = (ea) W2 ‘
0% Verified 0% Verified - -
58 Items 36 Items T e b————
0 Verified 0 \erified B9 LR ot SmmmndCotpntl oo il
58 Unverffied 36 Unverified 5 LRSI Cuteulets exll syt il tonsaletly
R ——— v [7O, 9000 Lowlovet Ruguenreasts basesd tust 1

S p——— Wty Pt (o g VLR P~ & S A S ST s ST
T W T % T — S = P+ e

Figure 5: Tracing requirements with the Graphical User Interface (GUI) of TBmanager, a component of the
LDRA tool suite

The area on the left of Figure 5 shows how a graphical representation of the traceability policy between
requirements and tests cases of different scopes. Requirements and test cases are then authored or
imported and linked together, so completeness in requirements decomposition and test coverage can be
assessed. Test cases can be reviewed and developed based on requirements identifying and filling gaps
in requirements coverage quickly and easily.

Bi-directional analysis can also identify “orphan” test cases that are not linked to requirements,
highlighting the need to make appropriate changes to requirements, test cases, or traceability
relationships. It can provide analysis in relation to changes in requirements, tests, or code and their
potential impact on timescales. It can provide the intelligence for regression testing to be targeted,
minimizing the incremental verification and review burden. And it can provide required evidential
artefacts such as traceability matrices, to show that test coverage of high-level and low-level
requirements has been achieved'.

Figure 6 shows a Traceability matrix between high-level requirements and functional test cases. Thirty-
three out of thirty-four requirements have an associated test case, so the test coverage of high-level
requirements objective is still unfulfilled. This level of transparency is essential to ensure that all
requirements have associated test cases.

LDRA TBmanager Test Case Traceability Matrix - Hi"h 1 aval Tacte > Hinh | aval

. ity Matrix
Requirements
Parest MLR_BOW0 WLR_OII1 MU 0125 MLR_6340 WLR D190 WLR OUN WLR 020 WLR 0030 WLR_DOJO WLR 0930 LR
Project € \LdraiDemonTunnel_Swo'trunk D0 178 Turnel_S by Dty Ot
TC_pose
TOL_ o2 x
Summary o ese x
T 828
High Level Requirements ltems Covered by High Level Tests ltems: 33734 (97% oL erte
High Lavel Tests llems Covering High Level Requirements ltems: 3334 (37% TCL_0ane
oL 0%
TCIL 8308
High Level Requirements Traceability Table LT
ToLnm X
Number Hame | Text Covered Numbe: Mame TCI_thad
High Leve! Requirements TOL0
MLR. 0090 In the nominal power silste 3fier enlerng 3 nomnal [ange TCI_BMS
Diapiay fotal pholometer ngut of nominal days sACe Cleanng e e Tel 06T b S T ——
col domand software shall deplay Total Cel demand and kamers [e Feter
metre
HLR_0231 . o
o Ayt powite mat sl Ciobvmetal | Dooisy | e Sommtuntomss opetymbmnite s skt i¥riosts sl pmernie Figure 6: Excerpt from a traceability
:“k:l‘r Bhe s oulput more bexl - oulgut ivels o greater han 120 Imia . . .
matrix (High-level requirements
_0125,
Adpat Geen B photometer nput kphtrg shal be sk ulsted S— The Tureel 3ot e tatiad precus o o photometer Rputs vl Show £ B uatons for .
- e w [T DT to tests cases) as illustrated b
Lighting
?,L:’G-T;?n.. Al software Gata shad be stored for management N ""‘;‘m:s::-_]m St educed Nom photomete o pvan & sef of Pt TBmClnClgeI’, a Component Ofthe
. s TCI 0320 cor cr e verfed 3GaPal expecied cutput fles wll verfy That dat o
intiskaation . | wackig. and repertng - manapemet capstites of e tohuare e DoRQ met | ! LDRA tool suite

1 Table A-7 objectives 3 and 4 from RTCA DO-178C, Copyright © 2011 RTCA, Inc. All rights acknowledged.

LDRA Ltd 8 Verification of Airborne Software in Compliance with DO-178C

LDRA

DO-178C Structural Coverage Analysis Objectives

Structural Coverage (SC) is used to identify which code structures and component interfaces have

been exercised during the execution of requirements-based test procedures, facilitating the empirical
measurement of requirements-based test effectiveness. As the name implies, Structural Coverage
Analysis (SCA) involves the scrutiny of the SC to determine if there are any parts of the code which have
not been sufficiently exercised, and if not, why.

The achievement of objectives A-7.5, 6, and 7 (Figure 8) involves the collation of structural coverage
metrics, typically by “instrumenting” a copy of the source code — that is, superimposing it with function
calls to collate coverage data — and executing that instrumented code using requirement based test
cases. These test cases primarily reference high-level requirements, supplemented by low-level
requirements as needed.

SCA is then applied to assess the effectiveness of this testing by measuring how much of the code has
been exercised. Coverage of portions of code unexecuted thus far may require additional test cases or
modifications to existing test cases, changes to requirements, removal of dead code, or perhaps the
identification of deactivated code and resulting unintended functionality. An iterative “review, analyse,
verify” cycle is typically needed to ensure that software coverage is achieved and low-level requirements
are verified, and graphical representation can be a great help.

- r
Y L
é ({ ThisLamp % (T_his_Lamp “,-'_n .
~~SirenSpacing) == 0 ExitSignspadng) ==10
| : a8
- r
= \(ThisLamp %
Q (° SirenSpacing) ==0
_|({ ThisLamp % 1}
ExitSignSpadng) ==0 B)
r D L
= ThisLampModel = Duo ;
e = .
<‘> (° else
r
~__|{ ThisLamp % & & if
SirenSpacing) ==0 “‘-xx (
b —) = (ThisLamp %
= N ExitSignSpadng) == 0
[z) © Uncovered {
statements — ThisLampModel = Guide ;
J)
I else
s {
@ = E'I'hisLamp %
SirenSpacng) ==0
l]
g ThisLampModel = Announcer ;
@ elze
{
Uncovered =] ThisLampModel = LightSolo ;
¥ branches }
S| H
= =] }
e return
= ThisLampModel ;

Figure 7: Graphical visualisation of code coverage in a flow graph in the LDRA tool suite

System requirements can be shown to have been correctly decomposed, implemented, and verified by
combining a complete trace from requirements through to code and test cases, with the achievement of
comprehensive functional test coverage and structural coverage objectives.

LDRA Ltd 9 Verification of Airborne Software in Compliance with DO-178C

LDRA

Item Description DO-178C DO-178C DO-178C DO-178C DO-178C
Reference Levl A Level B Level C Level D
5 Test coverage of software 6.4.4.2 / Not Not Not
structure (MC/DCQ) is Required Required Required
achieved

6 Test coverage of software 6.4.4.2a
structure (decision cover- 6.4.4.2b
age) is satisfied

/ Not Not
Required Required

/ / Not

Required

8 Test coverage of software 6.4.4.2c / / Not
structure (data coupling Required
and control coupling)
is achieved

7 Test coverage of software 6.4.4.2a
structure (statement cov- 6.4.4.2b
erage) is satisfied

DN N

9 Verification of additional 6.4.4.2d / Not Not Not
code, that cannot be Required Required Required
traced to Source Code, is
achieved

Note: Items 5, 6, 7 and 8 are not required for DO-178C Levels D and E. Items 1 to 4 (not shown) are
manual procedures.

\/ Satisfied by the LDRA tool suite, which can be used to satisfy the ‘with Independence’ requirement.
Figure 8: SCA Objectives for Each Software Level *?

Figure 8 shows that DO-178C objectives A7-5, 6, and 7 relate to the achievement of 100% MC/DC,
decision, and statement coverage respectively. The required combination of those objectives depends on
the design assurance level.

For Level A systems, structural coverage at the source level isn’t enough. Compilers often add additional
code or alter control flow, and often their behaviour is not deterministic. To ensure that functionality is
not compromised, DO-178C 6.4.4.2.b states:

“if the software level is A and a compiler, linker, or other means generates additional code that is not
directly traceable to Source Code statements, then additional verification should be performed to
establish the correctness of such generated code sequences”.

An automated mechanism to provide evidence of that verification can make that process much more
efficient. Because there is a direct one-to-one relationship between object code and assembly code, one
way for a tool to represent this is to display a graphical representation of the source code alongside the
equivalent representation of the assembly code. Object Code Verification (OCV) measures code coverage
at both the source and the assembly level by instrumenting each in turn (Figure 9).

This approach provides a means for the demonstrable and deterministic verification of the Executable
Object Code (EOC) on the target system. For OCV to be effective, it therefore needs to support the
microprocessor, associated instruction set, and compiler deployed on that system.

12 Based on table A-7 from RTCA DO-178C, Copyright © 2011 RTCA, Inc. All rights acknowledged.

‘ LDRA Ltd 10 verification of Airborne Software in Compliance with DO-178C

LDRA

Three discrete modes are used for each test case to quickly identify the “additional code” referenced in the
standard and dramatically reduce laborious manual analysis.

1. The test case is executed without instrumentation to confirm correct functionality.

2. The test case is executed by leveraging instrumentation at the source code level.

3. Finally, the test case is executed with instrumentation at the assembly code level to identify any uncovered
statements or branches that may have been inserted or altered during the compilation and linking
process.

Typically, a few additional requirements based tests can be added to verify this additional code to meet
objective A7-9 (Figure 7).

|ad LDRA Coverage Pass/Fail+ Flowgraph of procedure :_addProduct; = 85%; Branch= 60% - o *
Graph View Options Select Website Links Help

-]]] m (-] "] LY a @
addPreduct # = Source Viewer - addProduct A = addProduct
Control.flow altered by complier
| ecccccsccnenee iy oc.looojcooooooooo-ooocooooo-coo>)
o e oo
e | scannedProducts 0 |
@ 5]
push OFFSET 1
\:q ;'.?E._Sht
Unexecuted s
source code Corresponding
assembly
coverage
B Branch/Decision Covered Partial Branch/Decision Coverage - Branch/Decisien not Covered - (Diamond - Node has Branch/Decision | Circle - Mode has no Branch/Decision)

Figure 9: Visualization of control flow and code coverage in C and associated assembly code in the LDRA tool
Suite

Automated source code instrumentation and coverage data analysis reduces space and time overhead which
in turn makes the technology scalable and adaptable to a wide array of cross compilers, targets, in-circuit
emulators, and other embedded environments. Target integrations are highly extensible and support proces-
sors from simple 8 bit devices to high-performance multi-core architectures, IDEs, and 1/0 integrations.

Demonstrating Data Coupling and Control Coupling

In the evolution of the standard from DO-178B to DO-178C, there was a change of emphasis in how data and
control should be demonstrated.

DO-178B Section 6.4.4.2.c required that “analysis should confirm the data coupling and control coupling
between the code components.”

DO-178C Section 6.4.4.2.c requires “analysis to confirm that the requirements-based testing has exercised
the data and control coupling between code components.”

D0-178C therefore changes the DCCC objective from “an analytical exercise against the test design to a
measurement exercise against the test execution”®>.

B Wwhite Paper Object Code Verification and DO-178C Objective A7-9 v2.1 (Available on http://www.ldra.com/whitepapers)

LDRA Ltd 11 verification of Airborne Software in Compliance with DO-178C

LDRA

This essentially means that data coupling and control coupling analysis needs to be performed post
execution, and generated artefacts reviewed against the system requirements and architecture. That, in
turn, places a new burden on the development cycle.

Control Coupling

Control Coupling is defined by DO-178C as “The manner or degree by which one software component
influences the execution of another software component.” Procedure/functional call coverage reporting
can be presented as illustrated in Figure 7, or in report format for archival and audit purposes. Both the
visual and reporting approaches help to identify any gaps and guide targeted verification activities.

SCA and associated artefacts provide visibility and data to perform these activities and meet the
associated objective A-7.8 (Figure 7).

ad Coverage Pass/Fail+ Callgraph of program : GAC CPP Testb les MPC1d\dyn dialoghpfeallif; plrcpp =) =] x
Callgraph View Options Highlight Website Links Help

2B B 2 8B B 8 8B =2 2 2 LE B)
Calls View - File: funct_ptropp - GVC_CPP_Testbed\Examples MPCL.. # = Call Diagram - funct_ptr_1

= Procedure Calls Mumber of Calls Call Type
exit 1 System
= funcl 3 Internal 3
«foo 2 Internal it Lt
= fumc2 3 Internal
= main o Internal
printf 4 System ‘*.“1:
scanf 3 System _7
|
Pass/Fail Code Coverage View o x s.....,...-m[m Les 531
Procedure Calls Statement{100%) Branch/Decision(100%]
= funcl = 100
= foa = 100 - 100
= func2 = 100
= main = 100 =100

Coxde Coverage : foo : Dynamic Configuration - DO17EE Level A

Percent Percen!
v~ foo

v = Combined Ecwelage Run Fassed Prcxedut . lued E Procudare: funcd
- Spatornen A I- 100 + 700 Source Line 11 (Ral. Line 15){ | Seurca Une 16 (Rl Une 25)
== Branchy 9 acision Coverage 100 +100 e L i 12
»
W Pass: DO178E Level A = 1 Metric Passed B8 1 Metric Passed B Failed WM Failed (Unexecuted) Not Applicable

Figure 10: Procedureffunction call coverage as seen in call graphs generated by the LDRA tool suite

Data Coupling

Data coupling is defined by DO-178C to be “The dependence of a software component on data not
exclusively under the control of that software component”. Objective A-7.8 requires that “Test coverage
of software structure, both data and control coupling, is achieved.” As with control coupling analysis, any
dataflow measurements must be derived from the execution of requirements based tests.

The example in Figure 11 is duplicated from DO-248C, and its implementation is illustrated in the function
runAirspeedCommand on the right. The expected behaviour of this source code is to first calculate the
airspeed and then display it, in that order.

LDRA Ltd 12 verification of Airborne Software in Compliance with DO-178C

LDRA

RTCA DO-248C 31 void runAirspeedCommand (S _Ul6é command)
December 13, 2011 = {

(1]

33 switch (command)
— 3 {
case CALCULATE CMD:
36 calculatelAirspeed (airspeed):
Cailculate Desplay Ar 37 break;
s o s e 38 case DISPLAY CMD:
! 3¢ displayAirspeed (airspeed):’
- 40 break’
Prepared by: SC-205 41 A }
02011 RTCA, Inc. 42 -}
Figure 11: Example from DO-248C**
void
LDRA TBrun Test Case KA el i (
5_U16 command)
{
= switch
Variable 1/O View command
:Vilue Name Type :_I[

I DISPLAY_CMD command S U6 case 1:
*** Value Retained *** airspeed \ = calculateAirspeed (airspeed) ;
0 airspeed s U2 break ;
case 2

T~ displayairspeed (airspeed) ;
break ;

= H

E

Figure 12: Test case exercising runAirspeedCommand with the resulting control flow and structural
coverage represented in green. Example from TBrun, a component of the LDRA tool suite

The test case in the figure above exercises the second case in the switch statement as reflected by the
structural coverage below. It also shows that display is called without updating the airspeed to its latest
value. Additional test cases may invoke the calculateAirspeed command but not necessarily after a call to
displayAirspeed.

Variable Name
airspeed

Figure 13: LDRA tool suite report showing unreferenced variable in run time. These artefacts are used to
meet objective A-7.8

The report above was generated from executing the test case above. It shows dynamic data flow
information revealing that airspeed was in fact not written to on line 36 and wasn’t updated before it was
displayed, potentially displaying inaccurate information. In general, the observed data flow provides the
information required to reconcile the data interaction, requirements and architecture, and the behaviour of
the application.

14 Extracted from RTCA DO-178C, Copyright © 2011 RTCA, Inc. All rights acknowledged.

LDRA Ltd 13 verification of Airborne Software in Compliance with DO-178C

LDRA

Data coupling analysis is focused on the observation and analysis of data elements, such as airspeed,
as they are set and used (“set/use pairs”) across software component boundaries. Manually performing
these exercises with debuggers is labour intensive, difficult to repeat, and error prone. Automating the
activity dramatically reduces that overhead.

Object-Oriented Technology

In the early 2000s, object-oriented technology was viewed in the commercial avionics space as novel and
unproven. Around that time the Certification Authorities Software Team (CAST) published papers (CAST 4
and 8 in 2000 and 2002) to enumerate concerns and limitations.

As DO-178B was updated to DO-178C it was decided that these concerns, vulnerabilities, and subsequent
additional objectives associated with object-oriented technologies would be addressed not by the
original standard but rather a supplement, DO-332%. This new supplement describes concepts and key
features of object-oriented technologies and related techniques, discusses their impact on the planning,
development, and verification processes, and enumerates their vulnerabilities.

00 Objectives

Two objectives were included in the DO-332 supplement:

e A-7 00.10 Verify local type consistency (section 00.6.7.1)
e A-7 00.11 Verify the use of dynamic memory management is robust

It is useful to understand Liskov’s Substitution Principle in relation to the first of these.

“Let q(x) be a property provable about objects x of type T. Then q(y) should be true for objects y of type S
where S is a subtype of T”

In object-oriented languages, inheritance allows the behaviour of superclasses to be overridden by
subclasses. As described in DO-332 FAQ #14, ensuring safe use of inheritance, method override, and
dynamic dispatch is challenging as the nature of these techniques can make it unclear from a simple
review which method is executed at any call point in a program. Overridden behaviour in instantiated
subclasses may alter the behaviour beyond the intended scope of the superclass and violate type
consistency Figure 14. As DO-332 section 00.6.7.1 further describes, this means that the preconditions of
the parent class must not be strengthened, and the postconditions and invariants defined on the state of a
class must not be weakened.

Rectangle virtual void Rectangle::SetWidth (double w) {
B i itsWidth=w;
b GetwAdh() double }

\ GetHeight():double
o SetHeight(h: double):void

s SO (w:doubte}void Post condition: itsHeight does not change

€D Rectangl e(w double h double

void Square::SetWidth (double w) {

P— Rectangle::SetWidth(w);
(5 Getwadt(:double Rectangle::SetHeight(w);
= P o }

- SetVAdI W double rvoud

D Speiiatty Post condition: itsHeight set to w

Figure 14: Parent and child class showing code that violates type consistency

15 RTCA DO-332 Object-Oriented Technology and Related Techniques Supplement to DO-178C and DO-278A

LDRA Ltd 14 verification of Airborne Software in Compliance with DO-178C

LDRA

From a verification standpoint, DO-332 00.6.7.2 suggests that one of the following activities must be
performed:

e Verify substitutability using formal methods.
e Ensure that each class passes all the tests of all its parent types which the class can replace
® For each call point, test every method that can be invoked at that call point (pessimistic testing)

The first of these applies to the small minority of development teams who are using formal methods,
whilst the third (once commonly referred to as flattened class testing) requires that each possible dispatch
is tested at every call point in a program. That can easily cause a combinatorial explosion of test cases,
dramatically increasing the verification burden.

That leaves the second option as the most practical for most people - to ensure type consistency, without
the burden of pessimistic testing. Doing so requires that each class and its methods must pass all tests of
every superclass for which it can be substituted (D0O-332 FAQ #34).

Figure 14 shows that the superclass Rectangle and its methods explicitly set the height and width

with respective methods, but the Square class “shortcuts” that by setting them both in the SetWidth
function. Since a square’s height and width are the same, this seems acceptable. However, because type
consistency is violated, test cases for the SetWidth method for the Rectangle class may not pass those for
its subtype Square.

Reusing test cases from the parent class Rectangle on the subclass Square will highlight such type
consistencies (Figure 15).
Rectangle::SetWidth()

n
SHPSI S W Test Cases Y.
Requrement Number: (L 3 1001 N |
Body:

The software shal corectly set the width of the shape. -

Post CondiSon: l Square::SetWidth()

assert{(tsWidth == w) BA (AsHeight == old.itsHesght));
Invanant:
assert{tsWidth > 0);

Figure 15: The Rectangle Class test cases are applied to its Square subclass to ensure local type
consistency

A negative test case for the Rectangle class shows that as expected, setting the width has no impact on the
height. When that same negative test is applied to the Square class’s SetWidth method, one can clearly
see that itsHeight is changed, violating type consistency (Figure 16).

Test Case Regression P / F Procedure Test Case Regression P / F Procedure
ol PASS Rectangle:Rectangle &1 CA\Square.tcf
éh 2 Negative Testing Rectangle=SetWidth —— | B C:\Square SetWidth.tcf
Reusing test cases Subtype is NOT consistent
Variable = Type Initial Value Final Value Expected Status Variable Type Initial Value Final Value Expected Status
iisHeight Double 1.000000e+000 1.000000e+00 No Change PASS fsHeght Double | 1.000000e+000 4.000000e+00 | No Change FAIL
tsWidth Double 2 0000000+000 4 0000000+00 Change PASS BaWiath Double 2000000e+000 4 000000e+00 Change PASS

Figure 16: Parent class test cases being reused to test a subclass to detect an inconsistent subtype

LDRA Ltd 15 verification of Airborne Software in Compliance with DO-178C

LDRA

A range of static and dynamic analysis techniques can be deployed in order to fulfil DO-332 A-7 00.6.8.1
“Verify the use of dynamic memory management is robust” and the related vulnerabilities outlined in
Annex 00.D.1.6.1.

Tracking memory allocation and deallocation helps to ensure the proper freeing of memory, as do
associated checks prior to dereferencing. Low-level testing provides a mechanism to explore various
allocation/deallocation scenarios to help ensure that vulnerabilities described in (00.D.1.6.1) are
addressed. Timing hooks within the low-level tests help characterize allocation/deallocation timing and
dynamic data flow analysis tracks references and updates of data elements in runtime to detect lost
updates and stale references.

Other Considerations
When using object-oriented technologies or related techniques, there are various other factors to consider:

Source to Object traceability

As mentioned in 00.D.1.2.1, source to object code traceability may be more difficult to correlate in object-
oriented languages. OCV solutions provide a graphical comparison of assembly code coverage and high-
order language coverage (i.e. C++) to ensure that the source coverage data accounts for variations in the
structure of executable object code (EOC) as compared to the source code.

Traceability to child classes

00.5.2.2.i states “Develop a locally type consistent class hierarchy with associated low-level requirements
whenever substitution is relied upon”. In other words, a requirement that traces to a method implemented
in a class should also trace to the method in its subclasses when the method is overridden in that subclass
(FAQ #9). Static analysis and code visualization exposes inheritance relationships within the analysed
code, making traceability gaps across class hierarchies easier to detect and remedy.

Coding standard for object-oriented languages

Languages such as C++ allow for tremendous syntactic/semantic flexibility. Standards such as MISRA
C++ 2008 and JSF AV++ help quickly define a language subset and best practices to provide a baseline for
software coding standards used in specific projects.

Challenges with structural coverage and low-level testing

Structural coverage of destructors, instantiating complex data types for testing, testing
templated classes and overloaded operators, and accessing private members, are just some of
the challenges that arise when working with object-oriented technologies or related techniques.
Tools need to be equipped to address these challenges and reduce cost of verification, while
preserving the integrity/credibility of the verification activities.

Model-Based Development

As with object-oriented technologies, model-based development (MBD) is addressed within a supplement
to DO-178C, called DO-331%.

DO-331 takes the approach that specification models or design models take the place of high-level
and low-level requirements respectively. Textual requirements may be linked to models upstream or
downstream (Figure 17).

16 RTCA DO-331 Model-Based Development and Verification Supplement to DO-178C and DO-278A

LDRA Ltd 16 verification of Airborne Software in Compliance with DO-178C

LDRA

Process that gener-
ates the life cycle
data

System Requirement
and System Design
Processes

Software
Requirement and
Software Design

Processes

Software Coding
Process

MB Example
1

Requirements
allocated to
software

Requirements
from which the
Model is
developed

Design
Model

Source Code

Figure 17: Model Usage Examples*

MB Example
2

Requirements
from which the
Model is
developed

Specification
Model
(See Note 2)

Design
Model

Source Code

MB Example
3
(See Note 1)

Requirements
from which the
Model is
developed

Specification
Model

Textual
description
(See Note 3)

Source Code

MB Example MB Example
4 5
(See Note 1) (See Note 1)

Requirements Requirements
from which the from which the

Model is Model is
developed developed
Design Design
Model Model

Source Code Source Code

Popular tools such as MathWorks® Simulink®¢, IBM® Rational® Rhapsody®'?, and ANSYS® SCADE? can
generate code automatically. DO-331 MB.5.0 (Software Development Processes) addresses traceability,
model standards and more for both software requirements and design processes where such tools are
used. MB.5.3 (Software Coding Process) is merely a cross-reference the equivalent section in DO-178C,
underlining the fact that best-practice coding-related process activities still apply whether code is hand-
coded based on a set of textual requirements, hand-coded based on design models, or auto-generated

from a tool.

Projects using auto-generated code almost always contain some hand-code too, and often include legacy
hand-coded components. It is possible to apply different coding standards to these different code
subsets, such as MISRA-C 2012 for hand-code, MISRA-C 2012 Appendix E for auto-generated code, and a

custom coding standard for legacy code.

D0-331 MB 6.0 (Software verification process) expands on how best practice applies to MBD, with DO-331
MB.6.8.2 (Model Simulation for Verification of Executable Object Code) expanding upon which verification
objectives can be partially satisfied at the model level, and which must be performed at the target level.

Partial Credit in the Model

“Verification of the Executable Object Code is primarily performed by testing. This can be partially assisted
by a combination of model simulation and specific analysis ... This combination can be used to partially
satisfy the following software testing objectives”.

Those objectives include the compliance of EOC with high-level and low-level requirements, test coverage
of software structure, and data coupling and control coupling. Additional verification activities must be
performed on the target hardware to fully satisfy these objectives. The document goes on to say that when
certification credit is sought from model simulation to partially satisfy software testing objectives and test
coverage regarding high-level requirements then it must be ensured that the same design model is used
for code generation and to produce the EOC.

It also specifies that plans are required to define which requirements and associated test and test
coverage activities are to be satisfied at the model level, and which are to be exercised on the target.

7 Based on table MB.1.1 from RTCA DO-331. Copyright © 2011 RTCA, Inc. All rights acknowledged.
18 https: //uk.mathworks.com/products/simulink.html

19 http: //www.-03.ibm.com/software/products/en/ratirhapfami

20 http: //www.ansys.com/products/embedded-software/ansys-scade-suite

LDRA Ltd 17 Verification of Airborne Software in Compliance with DO-178C

LDRA

Verification on Target Required

DO-331 MB.6.8.2 states that

“... specific tests should still be performed in the target environment ... The following software testing and
test coverage objectives cannot be satisfied by the model simulation since simulation cases should be
based on the requirements from which the model is developed.”

These objectives listed include EOC robustness, its compliance with low-level requirements, and test
coverage of low-level requirements.

The supplement then goes on to identify the various forms of verification objectives that can only be met
on the target, including confirmation of compatibility with the target hardware, and hardware/software
integration testing. It also lists various types of errors that can and cannot be revealed at the simulation
level and can only be detected on the target hardware.

Finally, DO-331 MB.B.11 (FAQ #11) addresses the questions of model coverage activity:

“Model coverage analysis is different than structural coverage analysis and therefore model coverage
analysis does not eliminate the need to achieve the objectives of structural coverage analysis per DO-178C
section 6.4.4.2.”

It goes on to state that model coverage analysis can be considered in very specific scenarios, “...on a case-
by-case basis and agreed upon by the certification authorities ...”

As a result, most organizations do some of the verification activities within the model but then re-affirm
the results of those activities on the target hardware to ensure that they meet the necessary criteria for
meeting objectives.

The integration of test and modelling tools help to achieve that seamlessly, including the static analysis of
generated code, the collection of code coverage from model execution, and the migration of model tests
into an appropriate form for execution on the target hardware (Figure 17).

Model Test Execution Simulation
ANSYS In Simulation LY AN

&
Test Cases
Model Behaviour k@)

(" 2 B And Model Coverage
Modeling tools Host Computer

Reusing model Application Behaviour Generated Code

tests And Code Coverage Executed on Host &

o o\
Coverage/Code Test Cases

Coverage
Target H/W

3 J
Generated Code
Executed on Target %

Test Cases

E Test Cases ' Test Cases 100% Coverage
Reused Pass Requirements Met

Figure 18: Migrating test cases from modelling tools to the LDRA tool suite for regression on target

LDRA Ltd 18 Verification of Airborne Software in Compliance with DO-178C

LDRA

Tool Qualification

If software tools are to automate significant numbers of DO-178C activities while producing evidential
artefacts showing that objectives have been met, it is essential to ensure that those tools can be relied
upon. DO-178C states that:

“the purpose of the tool qualification process is to ensure that the tool provides confidence at least
equivalent to that of the processes of this document are eliminated, reduced, or automated.”

Tool qualification is a vital part of to the certification process, and it is documented in the supplement
Software Tool Qualification Considerations (DO-330)21.

D0-330 introduces the concept of Tool Qualification level (TQL) on the basis of three criteria:
1) Atoolwhose output is part of the airborne software and thus could insert an error

2) Atool that automates verification processes and thus could fail to detect an error, and whose output is
use to justify the elimination or reduction of:

a) Verification processes other than that automated by the tool, or
b) Development processes that could have an impact on the airborne software.

3) Atool that, within the scope of its intended use, could fail to detect an error.
Where a tool is designed to be used for verification purposes, its output is not used as part of the airborne

software and it therefore cannot introduce errors into the software, making it a criteria 3 tool. Irrespective
of the application DAL, such a tool is always assigned Tool Qualification Level 5 (Figure 19).

Software Level : Critzeria 3
A TQL-1 TQL-4 TQL-5
B TQL-2 TQL-4 QL5
C TQL-3 QL5 —
D TQL-4 TQL-5 QL5

Figure 19: Tool Qualification Level Matrix

Certification authorities such as the FAA, CAA, JAA, and ENAC undertake tool qualification on a project
by project basis, so the responsibility for showing the suitability of any tools falls on to the organisation
developing the application. However, they can make use of Tool Qualification Support Packages (TQSP)
provided by the vendor. Such packages typically contain a series of documents, starting with the Tool
Operation Requirements that identify the development process needs satisfied by the tool and including
test cases to demonstrate that the tool is operating to specification in the verification environment.

Tool Qualification documentation must be referenced in other planning documents, and it plays a key role
in the compliance process (Figure 20).

21 RTCA DO-330 Software Tool Qualification Considerations Supplement to DO-178C and DO-278A

LDRA Ltd 19 verification of Airborne Software in Compliance with DO-178C

LDRA

RTCA/DO-178B/C

Structural Coverage Dynamic Data Flow Coverage

Analysis (SCA)

Tool Qualification
Support Pack
Overview

250+ Certifications For 80+ Companies With
75 Level A Certifications

Figure 20: LDRA Tool Qualification Support Packages

Tool Selection

The use of traceability, test management and static/dynamic analysis tools for an airborne software
project that meet the DO-178C certification requirements offers significant productivity and cost benefits.
Tools make compliance checking easier, less error prone and more cost effective. In addition, they make
the creation, management, maintenance and documentation of requirements traceability straightforward
and cost effective. When selecting a tool to assist in achieving DO-178C acceptance the following criteria
should be considered:

e Does the tool provide a complete ‘end-to-end’ traceability across the lifecycle through requirements,
code, tests, artefacts, and objectives?

e Does the tool provide static analysis to ensure conformance to industry leading coding standards such
as MISRA, CERT, and others?

e Does the tool enable Structural Coverage Analysis on the target hardware, as laid out in section 6.4.4.2

of the standard, including coverage at the source and object levels for Level A projects?

Is the tool available for all the languages, platforms, tool chains, and targets required in the project?

Has the tool been utilized in this manner successfully already?

Will the tool vendor assist in tool qualification?

Is tool support both flexible and extensive enough to meet changing requirements?

Is the tool easy to use?

LDRA Ltd 20 Verification of Airborne Software in Compliance with DO-178C

LDRA

Works Cited

“Liskov’s Substitution Principle”,
0O0Design.com, http://www.oodesign.com/liskov-s-substitution-principle.html

“MISRA C:2012 - Guidelines for use of the C language in critical systems”
ISBN 978-906400-11-8 (PDF), March 2013

“MISRA C++:2008 - Guidelines for the use of the C++ language in critical systems”
ISBN 978-906400-04-0 (PDF), June 2008.

“EUROCAE DO-178B Software Considerations in Airborne Systems and Equipment Certification”,
Prepared by EUROCAE Working Group 12 and RTCA Special Committee 167, December 10, 1992

“RTCA DO-178C Software Considerations in Airborne Systems and Equipment Certification”,
Prepared by SC-205, December 13, 2011

“RTCA DO-330 Software Tool Qualification Considerations Techniques Supplement to DO-178C and
DO-278A”,
Prepared by SC-205, December 13, 2011

“RTCA DO-331 Model-Based Development and Verification Supplement to DO-178C and DO-278A”,
Prepared by SC-205, December 13, 2011

“RTCA DO-332 Object-Oriented Technology and Related Techniques Supplement to DO-178C and
DO-278A”,
Prepared by SC-205, December 13, 2011

LDRA Technology Inc.

2540 King Arthur Blvd, 3rd Floor, 12th Main Lewisville Texas 75056
Tel: +1 (855) 855 5372

bsi. s SES, rovcnonae sownver LDRA UK & Worldwide LDRA Technology Pvt. Ltd.
Quality v r::::olm S Portside, Monks Ferry, Unit B-3, Third floor Tower B, Golden Enclave

v Management SAAR “PPROVED Wirral, CH41 5LH HAL Airport Road Bengaluru 560017
Tel: +44 (0)151 649 9300 Tel: +91 80 4080 8707

/1/90 0°zA D8Z1-0Q pue ddueldwod 33INs 1001 VA1

e-mail: india@ldra.com

LDRA Ltd 21 Verification of Airborne Software in Compliance with DO-178C

