LDRA

Software Technology

Developing software for household
appliances in accordance with

IEC 60730

Cost-effective certification for Class B
and Class C control software

www.ldra.com

© 2020 LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

Household appliances in accordance with IEC 60730

LDRA Ltd

http://www.ldra.com

LDRA

Contents

F (o o [t o 50O OO OSSOSO 3
The need for @ ProCess STANAAIA ... e 3
Classification of appliance SOFtWAre ... e 5
Application of IEC 60730 ProCesS @CiVItI€S ... 4
Requirements for the architecture (Clause H.11.12.0) e 6
Measures to control faults/errors (Clause H.11.12.2) oo 6
Measures to avoid errors (Clause H.11.12.3) e 7
Specification (Clause Hul1.12.302) e 7
Software safety requirements (Clause H.11.12.3.2.1) oo 7
Software architecture (Clause H.11.12.3.2.2) i 9
Module design and coding (Clause H.11.12.3.2.3) i 13
Design and coding standards (Clause H.11.12.3.2.4) ..o A
TeStING (ClAaUSE HuT1.02.3.3) oo 17
Module design testing (Clause H.11.12.3.3.1) oo 18
Software integration testing (Clause H.11.12.3.3.2) oo 21
Software validation (Clause H.11.12.3.3.3) e 24

Tools, programming languages, management of software versions, and modification
(ClAUSE Hud02.304) oo 25
COMCIUSTONS oo 27
REFEICNCES ..o 28

LDRA Ltd 2 Household appliances in accordance with IEC 60730

LDRA

Household appliances are becoming ever more smart, and the demand for new features is seemingly
endless. In particular, the connectivity that brings remote monitoring or control from across the room or
across the world is now commonplace.

Introduction

Generally, and unlike cars, medical equipment or aeroplanes, household appliances do not cause threat to
life in the event of malfunction. Development processes have therefore not always been as rigorous as in
those safety critical sectors. But extended functionality implies additional complexity, and unhappily that
is often accompanied by a less welcome increased rate of failure which is clearly not desirable.

Ensuring the potential failures are within acceptable limits is a challenge if customer safety and security
are to be ensured, and brand reputation untarnished. Appropriate measures to ensure safety, security
and reliability are required from the outset and throughout the product development lifecycle. There is no
better place to seek inspiration that the industries where software has long been a matter of life or death.

The need for a process standard

Process standards have paved the way for the safe development and deployment of electrical, electronic,
and programmable electronic systems since the early 1990s. The military standard MIL 498 was
instrumental in establishing many best practices for the development of safety/mission-related systems in
the defence sector and beyond.

The principles laid down by MIL 498 were enhanced in the IEEE 122072 standard which defined lifecycle
process activities for software and system development in accordance with the systems engineering
standard ISO/IEC 152883. In turn, hardware and software functional safety study groups working in the
early 1990s drew inspiration from ISO/IEC 15288 to create their own draft document, IEC 1508+

Further enhancements to IEC 1508 (including the first definition of the safety lifecycle) ultimately saw the
release of the now ubiquitous IEC 615085. Last updated in 2010, IEC 61508 is not only referenced in its
generic form by developers of functionally safe electrical, electronic, and programmable electronic systems
in industrial applications. It has also formed the basis for numerous industry specific standards including
variants for the automotive (ISO 262627), medical device (IEC 623048, and nuclear (IEC 608809) sectors.

* MILITARY STANDARD: SOFTWARE DEVELOPMENT AND DOCUMENTATION (o5 DEC 1994)
http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-498_25500/

2|SO/IEC 12207:1995. Information technology — Software life cycle processes. July 1995.
https://www.iso.org/standard/21208.html

31SO/IEC 15288:2008 Systems and software engineering — System life cycle processes
https://www.iso.org/standard/43564.html

4 |EC 1508: Functional Safety: Safety-Related Systems. August 1995.
https://ieeexplore.ieee.org/document/525946

5 |[EC 61508-1:1998 Functional safety of electrical/electronic/programmable electronic safety-related
systems
https://webstore.iec.ch/publication/19800

¢ |EC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-related
systems
https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:5515

71S0 26262-1:2011 Road vehicles — Functional safety
https://www.iso.org/standard/43464.html

8 |EC 62304:2006+AMD1:2015 CSV Consolidated version Medical device software - Software life cycle
processes
https://webstore.iec.ch/publication/22794

9 Nuclear power plants - Instrumentation and control systems important to safety - Software aspects for
computer-based systems performing category A functions

https://webstore.iec.ch/publication/3795

LDRA Ltd 3 Household appliances in accordance with IEC 60730

http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-498_25500/
 https://www.iso.org/standard/21208.html
 https://www.iso.org/standard/43564.html
https://ieeexplore.ieee.org/document/525946
https://webstore.iec.ch/publication/19800
 https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:5515
https://www.iso.org/standard/43464.html
https://webstore.iec.ch/publication/22794
https://webstore.iec.ch/publication/3795

LDRA

Safety is the freedom from unac-
ceptable risk of physical injury or
of damage to the health of people,
either directly, or indirectly as a re-
sult of damage to property or to the
environment.

IEC 60730% “Automatic electrical controls” is also a derivative
of IEC 61508. It is focused on electrical and electronic controls
associated with or used within household appliances - for
example, heating and air-conditioning systems. The standard’s
scope includes for appliances using electricity, gas, oil,

solid fuel, solar thermal energy, or a combination of these.
Furthermore, despite the moniker “household appliance”,

it also extends to devices used in public spaces including
shops, offices, hospitals, farms, and commercial and industrial
premises.

Functional safety is part of the
overall safety of a system or piece
of equipment and generally focuses
on electronics and related software.
It looks at aspects of safety that
relate to the function of a device or
system and ensures that it works
correctly in response to commands
it receives.

Despite the increasing complexity of their products, household
appliance developers are required to ensure that the likelihood
of injury to persons or damage to property resulting from their
use is very low, even in the event of negligence. The primary
purpose of IEC 60730 is to define a process that will ensure
these aims are met by ensuring the functional safety of these
products (sidebar®).

It provides technical guidelines applicable to any manual (see IEC 60335-1%) and automatic electrical
controls. These can take many forms. For example, they may:

e form part of an appliance,

e beindividual controls utilized as a part of a control system, or

e be mechanically integral with multifunctional controls having non-electrical outputs.

Itis incumbent upon a manufacturer seeking to be compliant with IEC 60730 to provide adequate

information for a control’s suitability to a particular application to be confirmed, and for it to be mounted,
used, and tested in an defined manner.

Classification of appliance software

IEC 60730 discusses mechanical, electrical, electronic, environmental endurance, EMC, and abnormal
operation for home appliances. For the evaluation of protective measures for fault tolerance and avoidance
of hazards, it classifies control functions according to their potential impact in the event of a fault:

e (lass A - Control functions that are not intended to be relied upon for the equipment’s safety and have
no feature that can harm a human being.

e For example: humidity controls, lighting controls, timers, and switches.

e (lass B - Control functions that are intended to prevent unsafe operation of the controlled equipment.
e For example: thermal cut-offs and door locks for laundry machines.

e (lass C- Control functions that are intended to prevent special hazards.
e For example: automatic burner controls and thermal cut-outs for closed, unvented water heater

systems.

0 |[EC 60730-1:2013 Automatic electrical controls
https://webstore.iec.ch/publication/3117

1 |EC: Functional Safety
https://basecamp.iec.ch/download/functional-safety-essential-to-overall-safety/

2 |[EC 60335-1:2010 Household and similar electrical appliances - Safety - Part 1: General requirements
https://webstore.iec.ch/publication/1499

LDRA Ltd 4 Household appliances in accordance with IEC 60730

 https://webstore.iec.ch/publication/3117
 https://basecamp.iec.ch/download/functional-safety-essential-to-overall-safety/
 https://webstore.iec.ch/publication/1499

Controls for appliances that fall under Class B are typified by those used for washing machines,
dishwashers, dryers, refrigerators, freezers, and cookers/stoves, whereas gas-fired controlled dryers
and water heaters that might cause an explosion exemplify Class C3. Microcontroller units in Class B &
C appliances are typically evaluated following IEC 60335-1 Annex R*, with IEC 60730 Annex H* detailing
requirements for software based electronic controls.

The latter annex requires that “Controls using software shall be so constructed that the software does not
impair control compliance with the requirements other aspects of the standard. Compliance is checked by
the tests for electronic controls in this standard, by inspection ... and by examination of the documentation
required.”*®

In other words, for a control to be compliant, it needs to comply with all aspects of the standard whether
software is involved, or not. The extent to which that requirement places an overhead on a software
development team depends on the classification of control functions when, as Annex H confirms, “their
integration into the complete safety concept of the appliance shall be taken into account.“¥

Application of IEC 60730 process activities

Constructional requirements for control systems are specified in Clause 11 of IEC 60730-1 2013 which
includes the “Controls for Software” detailed in Annex H.11.12.

Aside from the blanket “compliance check” previously mentioned, subclauses H.11.12.1 to H.11.12.4
inclusive are only applicable to control functions using software class B or class C, and include measures
for the avoidance of systemic faults. Subclause H.11.12.4 contains additional requirements for remotely
actuated control functions.

The V model in Figure 1 is extracted from |IEC 61508-3 and adapted to the needs of IEC 60730.

I
Validation
testing

Software level

System level

Validated software

Validation

SW safety
requirements
specification

Safety
requirements
specification

Test concept
SW system tests,

P Integration tests ~ -
’ ~
Architecture 1 SW architecture Integration
. . e . SEE I EFESF S SN S EEEEEEEEEENEENER
specification specification festing
Module test
concept
Phe RN

Module testing
i .. — Output

..... » Venfication

Coding Test document
Code Design document,
- B specification

Figure 1: IEC 60730 V-model is adapted from that of IEC 61508-3

3 Controller for a washing machine (IEC 60730 / IEC 60335, ‘Class B’)
https://www.safetty.net/tt-design-examples/iec-60730-washer

% |EC 60335-1:2010 Household and similar electrical appliances — Safety
https://webstore.iec.ch/publication/1499

5 |EC 60730-1:2013+AMD1:2015+AMD2:2020 CSV Consolidated version Automatic electrical controls
https://webstore.iec.ch/publication/66894

% |EC 60730-1:2013+AMD1:2015+AMD2:2020 §H.11.12 “Controls using software”

7 |EC 60730-1:2013+AMD1:2015+AMD2:2020 §H.2.22 “Definitions relating to classes of control functions”

LDRA Ltd 5 Household appliances in accordance with IEC 60730

LDRA

Requirements for the architecture (Clause H.11.12.1)

Designers of control functions deploying software of class B or C are required to select from one of a
number of architectural strategies defined in the standard. Each approach is designed to control and avoid
software-related faults and errors in safety-related data and safety-related segments of the software.
These are listed in Figure 2.

Class | Control functions with Description
software

B [Single channel with A single channel structure in which test data is introduced to the functional
functional test unit prior to its operation

B | Single channel with A single channel structure in which components of the control are periodi-
periodic self-test cally tested during operation

B | Dual channel without | A dual channel structure which contains two mutually independent functional
comparison means to execute specified operations

C | Single channel with A single channel structure in which components of the control are periodi-
periodic self-test and | cally tested during operation, and monitored on an ongoing basis
monitoring

C [Dual channel (homoge- | A dual channel structure containing two identical and mutually independent
nous) with comparison | functional means, each capable of providing a declared response, in which
comparison of internal signals or output signals is performed for fault/error
recognition

C [Dualchannel (diverse) | A dual channel structure containing two different and mutually independent
with comparison functional means, each capable of providing a declared response, in which
comparison of output signals is performed for fault/error recognition

Figure 2: Structure of control software classes

Measures to control faults/errors (Clause H.11.12.2)

Software diversity, a form of dual redundancy, is a principle favoured by the standard for the control of
faults or errors in the software. For example, “redundant memory with comparison” requires the use of
different data formats to record the same data on two areas of the same component. Additional fault
detection means such as periodic functional test, periodic self-tests, independent monitoring are required
for the detection of faults that are not covered by comparison.

Itis also recommended to provide means for the recognition and control of errors in transmissions
to external safety-related data paths. For classes B and C, it is required that measures should be
implemented to address faults or errors in safety-related segments and data. Figure 3 shows some
examples of fault control techniques applicable to peripherals.

Component Fault/Error Class B Class C Example Measure
in MCU
Clock Wrong Frequency Recommended Recommended Frequency monitor-

ing by reciprocal
comparison inde-
pendent hardware

comparator
Variable DC fault or dynamic Recommended Recommended Periodic static
memory cross-links memory test or word

protection with sin-
gle bit redundancy,
redundant memory
with comparison

Figure 3: Examples of peripheral fault control techniques

LDRA Ltd 6 Household appliances in accordance with IEC 60730

LDRA

Systemic failure can be defined as “A failure that happens in a deterministic (non- random) predictable
fashion from a certain cause, which can only be eliminated by a modification of the design or of the
manufacturing process, operational procedures, documentation, or other relevant factors.“*®

Measures to avoid errors (Clause H.11.12.3)

Failures resulting from software problems are almost always systemic in nature, and the safety lifecycle
activities illustrated in Figure 4 are designed to avoid them. The verification of adherence to the
recommended practices applicable to each of the lifecycle stages is required to qualify the software for use
in Class B and Class C appliances. The following subsections will explore those practices further.

Software safety lifecycle (in realisation phase)

E/E/PE system ’
Safety lifecycle Software safety
< requirements specification
¥ y
Validation plan for Software design
102 Software aspects of &
System safaty development

r

PE integration
(hardware & software) r

n Software operation
' &
r Maintenance procedures

Software aspects of system 1
Safety validation

V

Figure 4: The Software Safety Lifecycle

Specification (Clause H.11.12.3.2)

Software safety requirements (Clause H.11.12.3.2.1)

During the control system design phase, functional requirements and safety requirements are refined, and
software and hardware elements are identified.

The primary objective of specification for the resulting software safety requirements is to describe every
safety-related function and non-safety-related function to be implemented, including functions related
to the detection, annunciation, and management of software and hardware faults. These descriptions
should include details of response times, related software classes, and interfaces between hardware and
software.

The secondary objective of this phase is to review and update the safety-related requirements previously
identified in the context of the system as a whole, referencing hardware and software interfaces, data flow,
data storage, data processing, and any subsystems supporting safety functionality.

As part of the standard’s requirements verification activities (which also include the verification of system-
level requirements coverage, for example) the review will consider whether the requirements have been
defined in accordance with best practice characteristics and attributes for good requirements are followed.
Establishing traceability for backward and forward requirements coverage ensures that all requirements
are met.

8 Exida resources — Systemic failure
https://www.exida.com/Resources/Term/systematic_failure

LDRA Ltd 7 Household appliances in accordance with IEC 60730

 https://www.exida.com/Resources/Term/systematic_failure

LDRA

Techniques and measures can be applied in accordance with IEC 61508 as shown in Figure 5, with Figure 6
showing how that principle applies in the case of software safety requirements specification.

Standard Classification

IEC 61508 SIL1 SIL 2 | SIL3 SIL 4
IEC 60730 Class A Class B Class C

Figure 5: Mapping of IEC 60730 classes to IEC 61508 SlLs

Although the standard does not require the use of tools, they can help make compliance far more efficient.
Requirement management tools are often used to specify and manage the requirements. Verification and
validation tools are used to create artefacts demonstrating that the products of development are in accord-
ance with the standard. And requirements traceability tools are used to demonstrate that requirements are
completely and uniquely covered by the resulting system.

Technique/Measure

Software safety requirements specification

1a | Semi-formal methods Table B.7 R R HR HR

1b | Formal methods B.2.2, --- R R HR
C.2.4

2 | Forward traceability between the C.2.11 R R HR HR

system safety requirements and
the software safety requirements

3 | Backward traceability between C.2.11 R R HR HR
the safety requirements and the
perceived safety needs

4 |Computer-aided specification B.2.4 R R HR HR
tools to support appropriate tech-
nigues/measures above

“HR” The method is highly recommended for this class.

“R” The method is recommended for this class.
“---” The method has no recommendation for or against its usage for this class.

Figure 6: Copy of IEC 61508-3 Table A.1 mapped to IEC 60730. LDRA static analysis tools
support the highlighted techniques.

Figure 7 shows a requirement coverage report generated automatically from the LDRA tool suite, linking
system level requirements to software requirements. An interface between the requirements management
tool of choice and the LDRA tool suite provides access to the requirements, and allows the percentage of
coverage for forward and backward traceability to be calculated.

The traceability matrix report shown represents requirements coverage in an intuitive way, allowing any
gaps to be easily identified. The reports can also be considered to be verification artefacts in accordance
with IEC 60730.

Y 1EC 61508-3 Annex A Table A.1 — Software safety requirements specification

LDRA Ltd 8 Household appliances in accordance with IEC 60730

LDRA

I
"]

LDRA TBmanager Requirements Traceability Matrix - Software High Level Requirements -> System Level Requirements
Preject C\LORA_Workarea_RC1 ALY ExamziasTosisulelDOORS_imparfDaors fop Date 5520 1046 28

Summary

System Lewed Requirements Bems: Covered by Sofware High Level Requirements lems: 1213 (32%)

Softaare High Level Requirements Hems Covering System Lewel Requiremants tems: 34/34 [100%)

System Level Requirements Traceability Table

Mumbsrbami Tt Covered | NumzesiNeme Tixt
Systisn Live Reduinements Semware High Level Reqeirements
S5, HLR D20, ingut
Desplay. (2 The Tunne! Lighting system shll prowize an human machine inlerlace for emuietion ofinpl and ecam naton of okt dalz s opton phoomsler | The softwane shal alow a real number value in e renge &-20 mAmgs o &
hizs) neming raage
e :l:-lﬁt_';q']r:':'lwﬂsr
B:Rw. ® TE Tunre! Lighing 315% SNl Srowde AN U3 MACK T ITIRNace for EMualion of gl atd ecrnaten o oyt 86 g et ot of b, | TR UGN SR8 Rk cul aDeand tinge s
il Nele)
Bl
I'Z:;‘t’la, 2 The Tunral Lighting 5% Traceability Matrix
550, &
',::_.ES::’ £ [Tl ek parent s¥5.000 $r5. 53,0030 S50 5150050 5 068 s¥5.0070 55 080 150050
srsan i
Ir::;"n;l:_l i T Tumng! Lighiing 575 HLR_b010 X
—_——— HLR_Dz0 ® by
HLR_D030 X X
HLR_D040 X
HLR_[050 x
HLR_Eam X x
HLR_bi%0 b3
HLR_D 1O x
HLR_D1HD X
HLR_bItS X
HLR_D120 ¥
HLR_IZ5 i
HLR_Bik X
HLR_D 10 ¥
HLR_B1s0 X
HLR_Ddd X
HLR_DiT) X
HLR_DE0 X
HLR_D120 X
HLR_I200 X
HLR_EZ10 ®
HLR_E218 X
HLR_i220 X kS X
HLR_1230 x b

Figure 7: Requirement coverage reporting in the LDRA tool suite

Software architecture (Clause H.11.12.3.2.2)

The primary objective of this clause is to ensure that the specified software architecture fulfils the
standard’s requirements for the relevant control class.

The architecture is required to be analysable and verifiable, and capable of being modified without
compromising safety. The design specification techniques are detailed in Table A.2 of IEC 61508 with respect
to the static and dynamic design aspects. During the planning phase of the software development activities,
techniques are nominated from that table as appropriate to the application and its classification.

Figure 8 and Figure 9 list the techniques and provides a cross reference to those architecture and design
features that can be confirmed by the LDRA tool suite as being reflected in the resulting source code.

LDRA Ltd Household appliances in accordance with IEC 60730

Technique/Measure
Architecture and design features

1a | Fault detection C.31 R R HR HR
2 | Error detecting codes C.3.2 R R HR
3a | Failure assertion programming C3.3 R R HR HR
3b | Diverse monitor techniques (with C.3.4 R R HR HR
independence between the
monitor and the monitored
function in the same computer)
3¢ | Diverse monitor techniques (with C.3.4 R R HR HR
separation between the
monitor computer and the
monitored computer)
3d | Diverse redundancy, C.3.5 R
implementing the same software
safety requirements specification
3e | Functionally diverse redundancy, C.3.5 R HR
implementing different software
safety requirements specification
3f [Backward recovery C.3.6 R R HR
3g [Stateless software design (or C.2.12 R HR
limited state design)
4a |Re-try fault recovery mechanisms C.3.7 R R
4b | Graceful degradation C.3.8 R R HR HR
5 |Atrtificial intelligence - fault C.3.9 NR NR NR
correction
6 | Dynamic reconfiguration C.3.10 NR NR NR
7 | Modular approach Table B.9 HR HR HR HR
8 |Use of trusted/verified software C.2.10 R HR HR HR
elements (if available)
“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---” The method has no recommendation for or against its usage for this class.

Figure 8 (Part 1): Copy of IEC 61508-3 Table A.2?° as referenced by IEC 60730. The architecture and design

features selected for use should subsequently be reflected in both the design and the resulting source
code. Highlighted features can be verified by the LDRA tool suite as being implemented in that code.

20|EC 61508-3 Annex A Table A.2 — Software design and development — software architectural design

LDRA Ltd

10

Household appliances in accordance with [EC 60730

Technique/Measure
Architecture and design features

9 | Forward traceability between the C.2.11 R R HR HR
software safety requirements
specification and software
architecture
10 | Backward traceability between the C.2.11 R R HR HR
software safety requirements
specification and software
architecture
11a | Structured diagrammatic C.2.1 HR HR HR HR
methods **
11b | Semi-formal methods Table B.7 R R HR HR
e |ogical/functional block
diagrams
e Sequence diagrams
¢ Finite state machines/state
transition diagrams
Dataflow diagram
11¢ | Formal design and refinement B2.2, R R HR
methods ** C2.4
11d | Automatic software generation C.4.6 R R R R
12 | Computer-aided specification and C.2.4 R R HR HR
design tools
13a | Cyclic behaviour, with guaranteed C.3.11 R HR HR HR
maximum cycle time
13b | Time-triggered architecture C.3.11 R HR HR HR
13c | Event-driven, with guaranteed C3.11 R HR HR
maximum response time
14 | Static resource allocation C.2.6.3 R HR HR
15 [Static synchronization of access C.2.6.3 R HR
to shared resources
“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---* The method has no recommendation for or against its usage for this class.

Figure g (Part 2): Copy of IEC 61508-3 Table A.2 as referenced by IEC 60730. The architecture
and design features selected for use should subsequently be reflected in both the design and
the resulting source code. Highlighted features can be verified by the LDRA tool suite as being
implemented in that code.

LDRA Ltd

11

Household appliances in accordance with [EC 60730

LDRA

A secondary objective of this subclause is to ensure that the software is designed and implemented in
accordance with the techniques and measures appropriate to its nominated class. Verification plays a critical
role and the requirements for safety-related software need to be verified at design level using established
methods such as control flow analysis, data flow analysis, walk-throughs, and design reviews.

The architectural specification is to be verified as being in accordance with the specification of the software
safety requirements to ensure the correctness of:

interactions between hardware and software,

partitioning into modules and their allocation to the specified safety functions,
hierarchy and call structure of the modules (control flow) (Figure 10),

data flow and restrictions on data access (Figure 10), and

architecture and storage of data.

v § TunnelData::Dataln::GetData
v () Parameters
IO TunnelData::Tunnel * - pTunnel
3 Return Type - Bool
v [Global Constants

I NumSystemParams - Sint_32 - static - const TunnelData;:Dataln::GetData
I NumZoneParams - Sint_32 - static - const AN
I TunnelData:DivideByZero - Char - static - const]
> = Local Variables #
> <t Member Variables /
> B Calls
> © TunnelData::Dataln:ReadContent

r
/

J

e::InitialiseZone

FAN T.rreData: :Cell: InitizliseCel

Figure 10: Diagrammatic representations of data flow (left) and control flow generated from source code by
the LDRA tool suite aid verification of the implementation of software architectural design.

Figure 11 illustrates the standard’s guidance with regards to the selection of the programming language(s) to
be used and the associated tool chain for the development of that code, including verification and validation
tools, static code analysers, test coverage monitors and configuration management tools.

LDRA Ltd 12 Household appliances in accordance with IEC 60730

Technique/Measure
Support tools and programming languages

1a | Suitable programming language C.4.5 HR HR HR HR

1b [Strongly typed programming C.4a HR HR HR HR
language

2 [Language subset C.4.2 HR HR

3 | Certified tools and certified C.4.3 R HR HR HR
translators

4 | Tools and translators: increased B.4.4 HR HR HR HR
confidence from use

“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---” The method has no recommendation for or against its usage for this class.

Figure 11: Copy of IEC 61508-3 Table A.3** as referenced by IEC 60730. The techniques selected for use
should subsequently be reflected in both the design and the resulting source code. Highlighted features
can be verified by the LDRA tool suite as being implemented in that code.

Module design and coding (Clause H.11.12.3.2.3)

Software is required to be designed in accordance with modular principles, and to reflect the architectural
design, such that the design and the resulting code is traceable to the software architecture, and hence to
requirements. The design is required to specify function(s), interfaces to other modules, and data.

The best practise design principles of maintaining the hierarchical structure with minimized data and
control flow can be achieved in this phase. Structural complexity can be minimized by keeping the number
of possible paths through each software module small, and the relationship between the input and output
parameters can be kept as simple as possible by avoiding complicated branching and any unconditional
jumps in higher level languages.

Defensive programming and plausibility checks can also be adopted within the modules. The recommended
techniques and measures can be found in Figure 12, which also illustrates how the LDRA tool suite can help.

21 |EC 61508-3 Annex A Table A.2 — Software design and development — support tools and programming
languages

LDRA Ltd 13 Household appliances in accordance with IEC 60730

Technique/Measure
Detailed design

1a | Structured methods ** C.2.1 HR HR HR HR
ib | Semi-formal methods ** Table B.7 R HR HR HR
1c | Formal design and refinement B.2.2 R R HR
methods ** C.2.4
2 [Computer-aided design tools B.3.5 R R HR HR
3 |Defensive programming C.2.5 R HR HR
4 | Modular approach Table B.9 HR HR HR HR
5 | Design and coding standards C.2.6 R HR HR HR
Table B.1
6 [Structured programming C.2.7 HR HR HR HR
7 | Use of trusted/verified software C.2.10 R HR HR HR
elements (if available)
8 |Forward traceability between the C.2.11 R R HR HR
software safety requirements
specification and software design
“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---” The method has no recommendation for or against its usage for this class.
** Group 1, , “Structured methods”. Use measure 1a only if 1b is not suited to the domain for SIL 3R4.

Figure 12: Copy of IEC 61508-3 Table A.4% as referenced by IEC 60730. The techniques selected for use
should subsequently be reflected in the resulting source code. Highlighted features can be verified by the
LDRA tool suite as being implemented in that code.

Static analysis techniques including control flow analysis, data flow analysis, walk-throughs, and design
reviews can be applied in order to confirm that the module specification is in accordance with the architec-
ture specification.

Model based development

The LDRA tool suite can be integrated with several different model-based development tools exemplified
by IBM Engineering Systems Design Rhapsody?3, MathWorks Simulink?4 and Ansys SCADE?. The develop-
ment phase itself involves the creation of the model in the usual way, with the integration becoming more
pertinent once source code has been auto generated from that model. The integration itself is primarily
leveraged during software unit testing, and software integration and testing.

22 |EC 61508-3 Annex A Table A.4 — Software design and development — Detailed design

23 |BM Engineering Systems Design Rhapsody
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

24 MathWorks Simulink - Simulation and Model-Based Design
https://www.mathworks.com/products/simulink.html

25 Ansys Scade
https://www.ansys.com/products/embedded-software

LDRA Ltd 14 Household appliances in accordance with IEC 60730

https://www.ibm.com/us-en/marketplace/systems-design-rhapsody
https://www.mathworks.com/products/simulink.html
https://www.ansys.com/products/embedded-software

Design and coding standards (Clause H.11.12.3.2.4)

This clause describes the phase in which code is designed and developed, applying the design practices
and coding standards specified earlier in the lifecycle. Coding standards look to define programming
practice including naming conventions, proscribe unsafe language features, and specify procedures for
source code documentation. Static analysis techniques are used to verify that the resulting application
code represents and accurate interpretation of the module specification.

By applying these best practices, the resulting code will be as secure, reliable, error-free, and easy to test

and maintain as possible. For example:

e large, rambling functions with complex interfaces
are difficult to read, maintain, and test —and hence
more susceptible to error.) L

e High cohesion improves maintainability and “degree to which the elements inside

reduces complexity. (sidebar) a module belong together”.

The term “cohesion” refers to the

These measures prescribed by the standard can be) ..
checked quickly using automated tools, such as the Advantages of high cohesion include:
TBvision component of the LDRA tool suite (Figure 13). * Reduced module complexity
TBvision can be used to evaluate the use of interrupts, * Increased system maintainability,
pointers, recursion, and non-structured control flow,
to check for run time errors, and to perform Structured]
Programming Verification (SPV) to ensure that there main affect fewer modules.
are no potentially harmful unstructured sections in the
application code.

because logical changes in the do

Technique/Measure

Design and coding standards

1 [Use of coding standard to reduce C.2.6.2 HR HR HR HR
likelihood of errors
2 | No dynamic objects C.2.6.3 R HR HR HR
3a | No dynamic variables C.2.6.3 R HR HR
3b [Online checking of the installation | C.2.6.4 R HR HR
of dynamic variables
4 | Limited use of interrupts C.2.6.5 R R HR HR
5 |Limited use of pointers C.2.6.6 R HR HR
6 |Limited use of recursion C.2.6.7 R HR HR
7 | No unstructured control flow in C.2.6.2 R HR HR HR
programs in higher level
languages
8 | No automatic type conversion C.2.6.2 R HR HR HR
“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---» The method has no recommendation for or against its usage for this class.

Figure 13: Copy of IEC 61508-3 Table B.1?% as referenced by IEC 60730. Highlighted techniques and
measures are supported by the LDRA tool suite.

26 |EC 61508-3 Annex B Table B.1— Design and coding standards

LDRA Ltd 15 Household appliances in accordance with IEC 60730

LDRA

Verification of implemented modules

Best practise dictates that static and dynamic analysis of the code should be an ongoing process while
ever it is under development. The code implementation process is therefore interwoven with ongoing static
analysis, and with module and integration testing.

The are many internationally recognised coding standards, including MISRA C:2012, MISRA C++:2008,
JSF++ AV, and CERT. Both IEC 61508 and |IEC 60730 make it clear that development teams are at liberty
to adapt any these standards or even to develop their own. The adherence of application code to the
standard of choice can be verified within the LDRA tool suite to ensure that any detrimental effect on
productivity resulting from the adherence to coding standards is kept to a minimum (Figure 14).

Exd Programming Standands Ca Diagram of progrees i CALIRA_ Woskares _0PP ‘albs_contioilenc - o x
Geaph Type Wiew Options Highlight ‘Webste Links Help
L EEe =
Caiks Ve - Fles she_conralen.c - CILDAA_Workares C_CFFL B | ol Diogram - ate,_poetrober_t 5 =
-
B Procedure Calls Husmker of Cally Cabl Type
o cakulate toeshald | leteshal
i eain a Ietmnal
i vizecd 1 Syvtem
Frogadina: man
Saires Ung 11 (ol Ling 21}
Al Solectod Standants Passad
o x
wakculate threshold }m
parameter. (MEEAC:2012154 1 Ber gk 125
e Frocedure: ciciate_threshold
n srery gy et IMISEA-C. 070 Source Line 4 (R, Lne 10}
MESRA-C:2012 Standards Faked: 2 Mancatory, 2 Roguiod
A"} scoeseds MISE, 2 -
I2ED 3R 1) DLt 0 PR 124
/ ahs_controlier.c
static int32 _t
calculate_threshold
int32 tAl2] 9
i B = = X
L}
size t Code R -coadste Swestol o © -MIFRA-CIAI2 Mosel = x
¥ __ - i Husizer Vielated Level of Viclation Phass Cede Stendand Code
R s-:r_?f or ? SR et va ¥ @ caloulate Shosshald
401 5 : Use of sizeof on an array parameter. (MISRA-C:20 12(Ed 3 Rev 1) R.12.5 A Use of saeal of AN S1Ey parImEbs, 2 Mandatary s MISRA-COMZES 2 Rex 11 BI125
cizacf (A[0] # Mrene seedh [FHEE3 MISRA-CDMZEA 3 Rew 1) DALDATE
e o . e B : . # Amayinde: i negatior. : A" ed=-1 Re 23 MISRA-C-2012(E 3 Rew 1 R1ELT
401 §: Use of sizeof on an array parameter. (MISRA-C:2012(Ed 3 Rev 1) R.12.5 " iy ik s nagative. : A"} sccesn quired i 2E
rgtum / Programing Susedind Cousrnd Yew Code Reves - caaisbe Frechold ;O - MISRAC-X13 Modsl
. A I size -2 I Optienal Indpematiznal Fict Applicabls
692 5 : Auray index is negative. : A[*]; accessed=-1 (MISRA-C:2012(Ed 3 Rev 1) R.1
493 5 : Numeric overflow. (MISRA-C:2012(Ed 3 Rev 1) D.4.1,D.4.14 R.12.4)
\
h

Figure 14: Highlighting coding guideline violations according to MISRA C:2012 Ed3, Rev1.

In practice, the ongoing application of static analysis throughout the code implementation phase can
provide support and tutelage to a development team. For developers who are newcomers to IEC 60730,
the role of the tool often evolves from a means to highlight where violations have occurred, to one where it
provides confirmation that there are none.

Figure 15 shows how the standard calls for the application of several review processes and analysis with
the aim of producing clear, maintainable and testable code. The TBvision component of the LDRA tool suite
includes several features to help achieve these aims, including the generation of software quality metrics.

LDRA Ltd Household appliances in accordance with IEC 60730

Technique/Measure
Static analysis

1 | Boundary value analysis C.5.4 R R HR HR
2 [Checklists B.2.5 R R R R
3 | Control flow analysis C.5.9 R HR HR HR
4 |Data flow analysis C.5.10 R HR HR HR
5 | Error guessing C.5.5 R R R R
6a |Formal inspections, including C.5.14 R HR HR
specific criteria
6b | Walk-through (software) C.5.15 R R
7 | Symbolic execution C.5.11 R R
8 | Design review C.5.16 HR HR HR HR
9 | Static analysis of run time error B.2.2 R R R HR
behaviour C.2.4
10 |Worst-case execution time analy- C.5.20 R R R R
sis
“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---” The method has no recommendation for or against its usage for this class.

Figure 15: Copy of IEC 61508-3 Table B.8?7 as referenced by IEC 60730. Highlighted techniques and
measures are supported by the LDRA tool suite.

These metrics provide a means to ensure that software component size, complexity, cohesion, and
coupling are controlled. Complexity metrics, for example, are generated through a combination of interface
analysis, cohesion evaluated through data object analysis, and coupling through data control coupling
analysis.

Testing (Clause H.11.12.3.3)
Software test is performed across a number of stages as development progress.

Module level testing is first to ensure that modules have been implemented in accordance with the low-
level design specification and hence fulfil all specified safety functions and control functions. Unintended
functionality must be also be shown to be absent.

As software modules are integrated together, testing of the resulting software subassemblies and
ultimately the complete integrated system are validated with suitable test cases based on the software
safety requirements specification.

In general, the use of a fully integrated tool suite for testing can ensure that the good practices required
by IEC 60730 are adhered to whether they are coding rules, design principles, or principles for software
architectural design.

27 |EC 61508-3 Annex B Table B.8 — Static analysis

LDRA Ltd 17 Household appliances in accordance with IEC 60730

Module design testing (Clause H.11.12.3.3.1)

The objective of the code reviews during the module design and implementation phase is to incorporate
good coding practices and ensure that the implemented software is of high quality (Figure 16).

A test concept with suitable test cases is required, based on the low level module design specification.
Each software module is then tested as specified within that test concept with test cases, data and results
documented. Code verification of a software module by static means includes such techniques as software
inspections, walk-throughs, static analysis and formal proofs.

Code verification of a software module by dynamic means includes functional testing, white box testing
and statistical testing. Where model-based development is deployed, back-to-back testing at the model
and code level is recommended.

It is the combination of evidence collated from both dynamic and static analysis that provides assurance
that each software module satisfies its associated specification. Software unit and integration tests need
to be executed on target hardware and if the developed unit or integrated software is “safety-related”,
then test results should comply with safety requirements.

Fault injection and resource tests help further ensure robustness and resilience.

Technique/Measure

Software module testing and integration

Probabilistic testing C.5.1 --- R R R
2 | Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
3 |Datarecording and analysis C.5.2 HR HR HR HR
4 |Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3
5 | Performance testing Table B.6 R HR HR
6 | Model based testing C.5.27 R R HR HR
7 |Interface testing C.5.3 R R HR HR
8 | Test management and automation C.4.7 R HR HR HR
tools
9 | Forward traceability between the C.2.11 R R HR HR
software design specification and
the module and integration test
specifications
10 | Formal verification C.5.12 R R
“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---” The method has no recommendation for or against its usage for this class.

Figure 16: Copy of IEC 61508-3 Table A.5%¢ as referenced by IEC 60730. Highlighted techniques and
measures are supported by the LDRA tool suite.

2 |EC 61508-3 Annex A Table A.5 — Software design and development —Software module testing and
integration

LDRA Ltd 18 Household appliances in accordance with IEC 60730

LDRA

Although module testing can be performed by writing custom code for the purpose, the use of a certi-
fied, proven test tool is likely to be much more cost effective unless the code base is very small. Such

a tool can automatically generate test drivers and harnesses (wrapper code) with no extra coding or
scripting required, enabling tests to be easily and efficiently run on code units. These tests can be
subsequently regressed, with clear maintenance tracking and seamless storage of test data and results.
An illustration of requirements-based unit testing using the TBrun component of the LDRA tool suite is
shown in Figure 17.

File Explorer
b & TunnelData:Lampatiributes=Drain Software interface is exposed at function scope...]
% TunnelData:LampAtiributescArea
4 & TunnelDatazSquareLamp:SquareLamp
4 5 Calls
T TunnelDatazLampArtributes:LampAttributes
“0 l{’;wmum ... allowing user to enter inputs and expected outputs...
int -1
() Tunne|Datazmodel - m
4 = Combined Coverage Run
= Statement Coverag Norible 1D View ‘é“"_
¢ Value Name Type Use Regression Analysis
4 = Current Coverage Run| [0 | int Input parameter applied through local Assigned
w= Statement Coverag) I TunnelDatasLightSolo m TunnelDatazmodel Input parameter applied through local Assigned
@ TunnelDatacLightSole ThisModel TunnelDatazmodel Output member variable Compare + Write
01 height int Output member variable Compare + Write
a1 width int Output member variable Compare + Write
p Test Case View i
Test Ca;e Regression P/ F Procedure Ohject =
o and the lDOl suite uses lhﬂt data wilhin |1 PSS Tunnel Data:LampattributessLampitiributes
a test harness, which is compiled and m:2 PASS Tunnel Data:Squarelamp:Squarelamp
3 PASS Tunnel Data:LampAttributes=Height 1
executed on the target hardware g. PASS TunnelData:LampAttributes-Width 1
(1 I PSS Tunmnel Data:LampAttributes:Drain 1 L
1= 1 PASS Tunnel Data:LampaAttributes:Drain i [
|7 PASS Tunnel Data:LampAttributes=Drain 1
v] Dacc A =TT Il Aedpiis s Iw? i d

Figure 17: Requirements-based unit testing using the TBrun component of the LDRA tool suite

Structural coverage metrics

In addition to showing that the software functions correctly, dynamic analysis is also used to generate
structural coverage metrics. In tandem with the coverage of requirements at the software unit level, these
metrics provide the necessary data to evaluate the completeness of test cases and to demonstrate that
there is no unintended functionality. Statement, branch and MC/DC coverage are provided by both the
unit test and system test facilities of the LDRA tool suite. Various test methods are applied during unit and
integration testing as listed in Figure 18.

LDRA Ltd Household appliances in accordance with IEC 60730

Technique/Measure
Dynamic analysis and testing

1 [Test case execution from boundary C.5.4 R HR HR HR
value analysis
2 | Test case execution from error B.5.5 R R R R
guessing
3 | Test case execution from error C.5.6 R R R
seeding
4 |Test case execution from model- B.5.27 R R HR HR
based test case generation
Performance modelling C.5.20 R R R HR
Equivalence classes and input Cs.7 R R R HR
partition testing
7a |IStructural test coverage (entry C.5.8 HR HR HR HR
points) 100 % **
7b | Structural test coverage (state- C.5.8 R HR HR HR
ments) 100 %**
7¢ | Structural test coverage (branch- C.5.8 R R HR HR
es) 100 %**
7d | Structural test coverage (condi- C.5.8 R R R HR
tions, MC/DC)
100 %**
“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---” The method has no recommendation for or against its usage for this class.

Figure 18: Copy of IEC 61508-3 Table B.2? as referenced by IEC 60730. Highlighted techniques and
measures are supported by the LDRA tool suite.

Figure 19 shows how structural coverage can be seen graphically in the control flow graphs and html
reports of the LDRA tool suite.

2|EC 61508-3 Annex A Table B.2 — Dynamic analysis and testing

LDRA Ltd 20 Household appliances in accordance with IEC 60730

| LORA Coverage PassiFal + Flowgraph of procedure -
Gragh View Optices Salect Wekriite Links Help
Procednre Stavememt Bramch L
B E BER BB B 9§ § wd
Ve Tl (o) LA L &
[Torns Datn:; Col = SotPowersdOuputLevel
Tusrnllista Zame-Torm [B
@ Teesllan Der aakelne o g
Twrellian Fane Clednelvggat amsh b] «
Tescellian T e AssgPonmeiCelstupa s .
TumrelDiats Zam o-AvsigiEnerpmcy L [E—— |
TesreDan Tussel St Turnel I | : B
- Trnan T Ao [[' i
B — WAL o st - P E G SRR R gl st s o |
e B i F W W)
fe TumeDua frmmiDan Gersmtpeig oo — |
] Tumelia Musrigloe hMosgies ¥ -
TumeDon MoaringArea Numl avgs L) % 2y
i | iz e b — [e ——
Uareget e [Tmeconrt | = meLameTypecourt | Tecoare | | | TomelDon L amg Trpe-LanseTape]
ToalDat i Ty B MLITI . o ———— |
Tumelan LampT
m by e—— T
Tum Do L amg Trpe-GePow) |
° B TERSTCTION XL S AR Jj Tunnel Data=Cell:SetPoweredOutputLevel %
Tum et | amp e Height void
! Toms e Lamg Amiroes-Wiah Cell: :SetPoaeredOutputl evel |
[i const Flost_64 LumensDemandPerMetre ,
const Float_64 CellSpacing) -
[«] 7 Assess which lamps should be used, learing o the larger lamps by prelerence. Where & selting is such that
all used lamps will pot be at maximum output, then those of a similar type will all use a lower setting.
Once those settings are ascertained, they are assigned to the lamps in Lumens for conversion to power, =/
Float_s4
Py T"Wut_ a® . p g rﬂ-"\’._“’-m =
o T¥ReCu.t < HumiampTy, .o
'|:-:ue-:c.mt "
= :’
L {
UnassgracCelounsu > Sl LampsUsed [TypeCount] = { int) { Unassigned Celloutput /
3 milampTypeMaxiumens [TypeCount]) ;
L 8 f
o (
o LampsUsed [TypeCount] > miampTypeCaourt [TypeCount]
)

{
{{Toa much demand far this type ta handle alane. Use &= many as possitle.
Lampatised [TypeCount] = mLamgTypeCourt [TypeCount] ;

LumensDemand [TypeCownt] = mLampTyseMad umens [TypeCoust]

Figure 19: Structural coverage can be seen graphically with control flow graphs and html reports
using the LDRA tool suite

Software integration testing (Clause H.11.12.3.3.2)

This clause requires that a test concept with suitable test cases is to be defined based on the architecture
design specification, and that the software is to be tested as specified within that test concept. Test cases,
test data and test results are to be documented.

Integrated software is to be proven by means of a number of specified test techniques. Depending on the
class of software, these may include functional and “black box” tests used to check the dynamic behaviour
of the software under realistic functional conditions, with the aim of revealing any failures to meet the
functional specification.

Test data may include combinations of:
e permissible ranges,

e inadmissible ranges,

e range limits, and

e extreme values.

Testing is to be the main validation method for software, and modelling can be used to supplement the
validation activities (Figure 20).

Integration testing is designed to ensure that when the units are working together in accordance with the
software architectural design, they meet the related specified requirements. In practice, these integration
tests typically involve the verification of safety and non-safety related software functions.

In general, it is desirable for all dynamic testing to use environments which correspond closely to the
target environment and hence test dependencies between hardware and software. However, that is not
always practical and one approach involves developing the tests in a simulated environment and then,
once proven, re-running them on the target.

LDRA Ltd Household appliances in accordance with IEC 60730

Technique/Measure
Programmable electronics integration (hardware
and software)

1 | Functional and black box testing B.5.1 HR HR HR HR
— Boundary value analysis B.5.2
— Process simulation Table B.3

2 | Performance testing Table B.6 R R HR HR
— Finite state machines

3 | Forward traceability between C.2.11 R R HR HR

the system and software design
requirements for hardware
software integration and the
hardware/software integration
test specifications

“HR” The method is highly recommended for this class.

“R” The method is recommended for this class.
“---* The method has no recommendation for or against its usage for this class.

Figure 20: Copy of IEC 61508-3 Table A.63° as referenced by IEC 60730. Highlighted techniques and
measures are supported by the LDRA tool suite.

To complement the structural coverage analysis (discussed in relation to module level testing), robustness
tests including boundary values could be provided manually or generated automatically (Figure 21) to
verify system behaviour in response to both permissible and inadmissible data ranges.

Eapemeest| fests Condupwe ooy Welse Help |

¥ Apply Upper and Lower Boundaries to Conditions |

=
[T \[
=

B e e b Configure the tool to
automatically generate
tests to exercise boundary

conditions...
& x
Regression P/ F Procedure Object *
PASS TunnelData:Lamp:Lamp
PASS TunnelData:Lamp:dnitialiseLamp 1
PASS TunnelData:Lamp:SetlumensOutput :
PASS TunnelData:Lamp::SetlumensOutput 1
PASS TunnelData:Lamp::GetMaximumLumens 3
PASS TunnelData:Lamp::GetMinimumLumens 1
|7 PASS TunnelData:Lamp::SendPowerToLamp 1 =i
...and run those tests to ms PASS TunnelData:Lamp:SendPowerToLamp 1 |
demonstrate the robustness @9 PASS TunnelData:Lamp:InitialiseLamp 1
i @ 10 PASS TunnelData:LampAttributes:LampAttributes
of boundary value handhng @ 11 PASS TunnelDatazSquarel amp:SquarelLamp
=12 PASS TunnelData:LampAttributes:Height 10
. . . @13 PASS TunnelData:LampAttributes:Width 10
Figure 21: Automatic test case generation and mu I s
. . [15 PASS TunnelData:LampAttributes:Drain 10
input pOpUIGtIOI? for boundary values and @16 PASS TunnelData:LampAttributes:Drain 10
17 PASS TunnelData:LampAttributes:Drain 10 |
robustn ess test Cases ’B 18 PASS TunnelData:LampAttributes:Drain 10 ~
L L1 »

3°|EC 61508-3 Annex A Table A.6 - Programmable electronics integration (hardware and software)

LDRA Ltd Household appliances in accordance with IEC 60730

Traceability

Establishment of forward and backward traceability is one of the requirements during module testing and
integration testing to ensure all requirements have been covered and all implementation has been tested
adequately. Tracing the low level requirements to source code and test cases can challenging, because of
the different tools typically used for requirement management and source code development.

The TBmanager component of the LDRA tool suite can help to establish traceability horizontally and verti-
cally throughout the lifecycle to source code, requirements and test artefacts.

[L’ System Level Requirements]‘ L‘l System Tests
46% Verified 0% Verified
13 Items 0 Items
6 Verified 0 Verified
7 Unverified Ly 0 Unverified

[L] Software High Level Requirem ents]‘ L’ High level tests

85% Verified 97% Verified
34 [tems 34 [tems

29 Verified 33 Verified

5 Unverified 1 Unverified

[L'l Low Level Requirements k— L3 Lowleveltests

93% Verified 95% Verified
58 Items 47 Irers

54 Verified 45 Verified

4 Unwerified 2 Unverified

Figure 22: Performing requirements based testing. Test cases are linked to requirements
and executed within the LDRA tool suite.

Figure 22 shows the traceability establishment for the lifecycle stages using the TBmanager component of
the LDRA tool suite.

The ideal tools for requirements management depends largely on the scale of the development. If there
are few developers in a local office, a simple spreadsheet or Microsoft Word document may suffice. Bigger
projects, perhaps with contributors in geographically diverse locations, are likely to benefit from an Appli-
cation Lifecycle Management (ALM) tool such as the IBM Engineering Requirements DOORS Family3:, Sie-
mens PLM Polarion ALM32, or any ALM tool supporting the standard Requirements Interchange Format33.

TBmanager integrates with these requirements management tools, mapping requirements to source code

implementation at module or integration level. It shows the fulfilment of low-level requirements, high-level
requirements, and/or the architectural specification, and creates an association with the artefacts created

by tools at all stages in the lifecycle (Figure 23).

31 |BM Engineering Requirements Management DOORS Family
https://www.ibm.com/us-en/marketplace/requirements-management

32 Siemens - Software Lifecycle Under Control
https://polarion.plm.automation.siemens.com/

33 Object Management Group — Requirements Interchange Format
http://www.omg.org/spec/ReqlF/

LDRA Ltd 23 Household appliances in accordance with IEC 60730

 https://www.ibm.com/us-en/marketplace/requirements-management
https://polarion.plm.automation.siemens.com/
http://www.omg.org/spec/ReqIF/

LDRA

LDRA TBmanager Test Case Traceability MatriX - Low level tests -> Low Level Requirements

M

Project CUDRA_Wiarkama_384_RCTExarpler Taotsate DOOAS_import Do e Cats BaATaID 124436

Summary

Lowr Laved Requiramants Bems Covered by Low leval 1asts ams: 4950 (B4%)

Lowr level fests Hems Covering Low Level Requirements llems. 47747 [100%}

Low Level Requirements Traceability Table

Hueiser Mamme: Texd | Covered | Rumsesiime T
Low Lewed Requiremenis Low level tests
LLR_D810, natanvs e Codl - 08, Cid :;E:l;’rh:ul 'E':I";';l'l"‘““‘ A7 28D ypes of [3MpY, 2R MUTITUR ATens, Zeng minkmar lumess, 2emdarthe el iDL |, Tol S \arity 3l th Salr 8 i comaely winlaled
LLR_0820, leisaksa Coll (1 Mele) | 5 Gt gt 4 i by rbaiaing Bt 18 4 unnrstins 4wl [0 10l i I £ ™ '1:'.|_.‘.|.‘r- Wity B Goied 14 el e el dend iR ety
LLA_DS%), S Ersararcy rupst lavel :::m_l;:&:l:\u by o grvalieat oevi pay Lvgrore shail b s (0 s Jefnas ayeeaansy darrang el jo srins
_an_O(.r-] Set PoweredCuipsiLevel (1 Nate) -:‘-:':(\!;dﬁll-;!—l‘ﬂ “aceahlllw Mamx
LLR_0850, Calculate el sufput [ece utpert shal
LIFBOEN, Liok LA Mol e § 300 I o o Parent LLR_D010 LLR_O0020 LLR_DO30 LLR_0040 LLR_OO50 LLR_0OG0 LLR_OO70 LLR_DOB0 LLR_ODS0 LLR_0100 LLR_0M10
LLR_0870, Get Larnp Model Guce & Gromte bz miaced
LLR_0861, Gef Lamp Model Announcer Aa Anrouscer lamp | Chid
= TCI_&110 X
TCI_S120 x5
TCI_5125 %
TEI_S120 ®
TCI_S5140 ®
TCI_5150 X
TCI_S200 ®
TCI_5210
TC1L 5220
TCI_5230
TCI_5240
TC1 5250
TC1_5260
TCL 520
TCI 5280

Figure 23: Reporting in the TBmanager component of the LDRA tool suite, providing traceability between
low level requirements and test cases.

Software validation (Clause H.11.12.3.3.3)

This section of IEC 60730 deals with the software aspects of system safety validation, ensuring that the
integrated system complies with the software safety requirements specification in accordance with the
specified class.

A validation concept with suitable test cases is created based on the software safety requirements speci-
fication which is then used to validate the software. The software is exercised by simulation or stimula-
tion of:

e input signals present during normal operation,
e anticipated occurrences,
e undesired conditions requiring system action.

Test cases, test data and test results are documented.

The techniques and measures deployed are similar to those applied during integration, as shown in
Figure 20.

Functional and black box testing can be used to check whether the functions of a system or program be-
have as the specification dictates when executed in a prescribed environment according to established
criteria. The associated configuration files can be stored and used for the automated regression analysis
to confirm ongoing adherence to the specified requirements.

LDRA Ltd Household appliances in accordance with IEC 60730

LDRA

Automated requirements traceability tools like the LDRA tool suite complement this concept by providing
forward and backward traceability between the software safety requirements specification and software
safety validation plan.

Tools, programming languages, management of software versions, and modification

(Clause H.11.12.3.4)

Equipment used for software design, verification and maintenance, such as design tools, programming
languages, translators and test tools, need to be qualified appropriately and shown to be fit for purpose.
IEC 60730 states that the tools are assumed to be suitable if “increased confidence from use” can be dem-
onstrated in accordance with C.4.4 of IEC 61508-7:2010. Figure 24 shows the techniques or measures for
support tools and programming language during software design and development.

Technique/Measure

Support tools and programming language

1 [Suitable programming language Table A.3 HR HR HR HR

2 | Strongly typed programming Table A.3 R R HR HR
language

3 [Language subset Table A.3 HR HR

4a | Certified tools and certified Table A.3 R HR HR HR
translators

4b | Tools and translators: increased Table A.3 HR HR HR HR
confidence from use

“HR” The method is highly recommended for this class.
“R” The method is recommended for this class.
“---* The method has no recommendation for or against its usage for this class.

Figure 24: Extracts from IEC 61508-3 Table C.3 as referenced by IEC 60730. Highlighted techniques and
measures are supported by the LDRA tool suite.

Programming languages

In selecting a “suitable programming language”, |IEC 61508-734 suggests that “The programming language
chosen should lead to an easily verifiable code with a minimum of effort and facilitate program develop-
ment, verification and maintenance”.

Features which make verification difficult and therefore should be avoided are:
e unconditional jumps excluding subroutine calls,

e recursion,

e pointers, heaps or any type of dynamic variables or objects,

34|EC 61508-7:2010 Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 7: Overview of techniques and measures
https://webstore.iec.ch/publication/5521

LDRA Ltd 25 Household appliances in accordance with IEC 60730

https://webstore.iec.ch/publication/5521

LDRA

interrupt handling at source code level,

multiple entries or exits of loops, blocks or subprograms,
implicit variable initialization or declaration,

variant records and equivalence, and

procedural parameters.

Tool qualification

IEC 60730 standard specifies the mechanism to provide evidence that the software tool chain can be re-
lied upon, by once again referring to IEC 61508. The use of unproven tools implies detailed and thorough
testing, which is a time consuming and costly process.

CERTIFICATE

No. Z10 17 12 84753 005

Holder of Certificate: LDRA Ltd.
Portside, Monks Ferry
Wirral
Merseyside CH41 5LH
UNITED KINGDOM

Factory(ies): 84753

Certification Mark:

—
<<
(]
™
-
-
w
w
L 4
(=}
(=]
<
o
e
-
-]
d
o
*
-
<<
x
=
=
=
-
o
T
o
*
fiin
fid

Product: Software Tool for Safety Related Development
Model(s): LDRA tool suite
LDRArules
LDRAcover
LDRAunit
LDRAlite
Parameters: The certified tools, classified T2, fulfil the requirements
for support tools according to IEC 61508-3 and EN 50128
The tools are qualified to be used in safety-related
software development according to IEC 61508, EN 50128
and ISO 26262. It is suitably validated for use in safety-
related development according to IEC 62304.
e
ﬁfi The test report is a mandatory part of this certificate.
Tested IEC 61508-3:2010
according to: 1SO 26262-8:2011
EN 50128:2011
IEC 62304:2015
The product was tested on a voluntary basis and complies with the essential requirements. The
certification mark shown above can be affixed on the product. It is not permitted to alter the
certification mark in any way. In addition the certification holder must not transfer the certificate
to third parties. See also notes overleaf.
Test report no.: LW85043C

Valid until: 2022-12-20

V&

Date, 2017-12-21 (Peter Weiss)

Page 10f 1

ZERTIFIKAT ¢ CERTIFICATE &

n®
TOV SUD Product Service GmbH - Zertifizierstelle - RidlerstraBe 65 - 80339 Miinchen - Germany TOV

Figure 25: One of two TUV certificates applicable to the LDRA tool suite

In most cases, the most cost effective approach is therefore to use a tool that is already approved for the
applied standard by an appropriate TUV certifying organization (Figure 25). The required level of confi-
dence in a software tool depends upon the circumstances of its deployment, with reference to the possi-
bility that the malfunctioning software tool and its corresponding erroneous output can introduce or fail
to detect errors in a safety-related item or element being developed, and the confidence in preventing or
detecting such errors in its corresponding output.

A Tool Qualification Support Package (TQSP) can help to establish confidence in a TUV certified tool in
the context of a particular development environment, in accordance with the specified class level.

Software modifications

These sections specify the steps to be followed during the modification of software. They provide guid-
ance on the implementation of corrections, enhancements and adaptations of validated software, ensur-
ing that the adherence to IEC 60730 for the resulting modified system is not compromised.

LDRA Ltd Household appliances in accordance with IEC 60730

LDRA

A software version management system is required at the module level, and all versions uniquely identi-
fied for traceability. Software modifications are required to be based on a modification request which
details the proposed change and the reasons for it, and the hazards which may be affected.

IEC 61508-3 Table C.835 defines appropriate considerations. These include:

the completeness and correctness of the modification with respect to its requirements,
the freedom from introduction of intrinsic design faults,

the avoidance of unwanted behavior,

the verifiability and testability of the design, and

the need for regression testing and verification coverage.

In this context, impact analysis is designed to determine whether a change or an enhancement to a
software system has affected its overall functionality or has the potential to do so. Such an analysis will
conclude that reverification will be required for only the changed software module in isolation, for all af-
fected software modules, or for the complete system.

The level of re-verification required will be influenced by the number of software modules affected, the
criticality of the affected software modules, and the nature of the change.

The facilities offered by the TBmanager component of the LDRA tool suite to illustrate the impact of

changed requirements and the tool suite’s capability to integrate with configuration and change control
tools including Github3®, Apache® Subversion®7, and Serena PVCS3%.

Conclusions

With its many sections, clauses and sub-clauses, I[EC 60730 may at first seem intimidating, and its sys-
tem of cross-referencing tables IEC 61508 and its annexes can make it difficult to follow. However, once
broken down into digestible pieces, its principles offer sound guidance in the establishment of a high-
quality software development process - not only leading up to initial product release but into mainte-
nance and beyond. Such a process is paramount for the assurance of true reliability, quality, safety and
effectiveness of programmable electronic components.

When supported by a complementary and comprehensive suite of tools for analysis and testing, the
adoption of that process can smooth the way for development teams to work together to effectively de-
velop and maintain large projects with confidence in their quality, simplifying the development process
for Class B and Class C software in accordance with IEC 60730 (Figure 26).

35 |EC 61508-3 Table C.8, “ Properties for systematic safety integrity — Software modification”
36 GitHub — Built for developers
https://github.com/
37 Apache Subversion
https://subversion.apache.org/
38 QBS Serena PVCS Version Manager
https://www.gbssoftware.com/serena-pvcs-version-manager_pvcsvm

LDRA Ltd 27 Household appliances in accordance with IEC 60730

https://github.com/
https://subversion.apache.org/
https://www.qbssoftware.com/serena-pvcs-version-manager_pvcsvm
http://www.omg.org/spec/ReqIF/

LDRA

Requirements Traceabilitg

TBmanager i
IBM®Engineering Requirements System System and Item gnoamgggnmc:nt
Management DOORSS Architectural Integration and TBmanager®
Intland Software codeBeamer Design Testing

Jama Connect™ Software

Atlassian® Jira® Software Test Verification

Siemens Polarion® ALM™ LDRA Testbed®
PTC Windchill RV&S & TBvision®
SILKROAD ALM
Systemite SystemWeaver Specification Testing of the
Requirements Interchange Software Safety Embedded

Format™ (ReqlF™)

Microsoft Word® and Excel® Requirements Software

Integration and
Model Driven Testing
LDRA Testbed®,
TBvision® & TBrun®

Model Based Development
IBM®Engineering Systems Software Softvyare
Design Rhapsody® Architectural Integratloq and
MathWorks® Simulink Design Verification

A SCADE
nsys Automated Unit Testing

TBrun®
Static Analysis)
. Quality Metrics Sl il Software Unit
Coding Standards Compllancg Design and Verification Programming standards
LDRA Testbed Implementation checking and metrication
& TBvision® LDRA Testbed®,
& TBvision®

Figure 26: The role of automated tools in IEC 60730 compliant application development

References

MILITARY STANDARD: SOFTWARE DEVELOPMENT AND DOCUMENTATION (o5 DEC 1994)
http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-498 25500/

ISO/IEC 12207:1995. Information technology — Software life cycle processes. July 1995.
https://www.iso.org/standard/21208.html

ISO/IEC 15288:2008 Systems and software engineering — System life cycle processes
https://www.iso.org/standard/43564.html

IEC 1508: Functional Safety: Safety-Related Systems. August 1995.
https://ieeexplore.ieee.org/document/525946

IEC 61508-1:1998 Functional safety of electrical/electronic/programmable electronic
safety-related systems
https://webstore.iec.ch/publication/19800

IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic
safety-related systems
https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD ID:5515

ISO 26262-1:2011 Road vehicles — Functional safety
https://www.iso.org/standard/43464.html

LDRA Ltd 28 Household appliances in accordance with IEC 60730

http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-498_25500/
https://www.iso.org/standard/21208.html
https://www.iso.org/standard/43564.html
https://ieeexplore.ieee.org/document/525946
https://webstore.iec.ch/publication/19800
https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:5515
https://www.iso.org/standard/43464.html

LDRA

IEC 62304:2006+AMD1:2015 CSV Consolidated version Medical device software - Software life cycle
processes
https://webstore.iec.ch/publication/22794

Nuclear power plants - Instrumentation and control systems important to safety - Software aspects for
computer-based systems performing category A functions
https://webstore.iec.ch/publication/3795

IEC 60730-1:2013 Automatic electrical controls
https://webstore.iec.ch/publication/3117

IEC: Functional Safety
https://basecamp.iec.ch/download/functional-safety-essential-to-overall-safety/

IEC 60335-1:2010 Household and similar electrical appliances - Safety - Part 1: General requirements
https://webstore.iec.ch/publication/1499

Controller for a washing machine (IEC 60730 / IEC 60335, ‘Class B’)
https://www.safetty.net/tt-design-examples/iec-60730-washer

IEC 60335-1:2010 Household and similar electrical appliances — Safety
https://webstore.iec.ch/publication/1499

IEC 60730-1:2013+AMD1:2015+AMD2:2020 CSV Consolidated version Automatic electrical controls
https://webstore.iec.ch/publication/66894

Exida resources — Systemic failure
https://www.exida.com/Resources/Term/systematic_failure

IBM Engineering Systems Design Rhapsody
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

MathWorks Simulink - Simulation and Model-Based Design
https://www.mathworks.com/products/simulink.html

Ansys Scade
https://www.ansys.com/products/embedded-software

IBM Engineering Requirements Management DOORS Family
https://www.ibm.com/us-en/marketplace/requirements-management

Siemens - Software Lifecycle Under Control
https://polarion.plm.automation.siemens.com/

Object Management Group — Requirements Interchange Format
http://www.omg.org/spec/ReqlF/

IEC 61508-7:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 7: Overview of techniques and measures
https://webstore.iec.ch/publication/5521

GitHub — Built for developers
https://github.com/

LDRA Ltd 29 Household appliances in accordance with IEC 60730

https://webstore.iec.ch/publication/22794
https://webstore.iec.ch/publication/3795
https://webstore.iec.ch/publication/3117
https://basecamp.iec.ch/download/functional-safety-essential-to-overall-safety/
https://webstore.iec.ch/publication/1499
https://www.safetty.net/tt-design-examples/iec-60730-washer
https://webstore.iec.ch/publication/1499
https://webstore.iec.ch/publication/66894
https://www.exida.com/Resources/Term/systematic_failure
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody
https://www.mathworks.com/products/simulink.html
https://www.ansys.com/products/embedded-software
https://www.ibm.com/us-en/marketplace/requirements-management
https://polarion.plm.automation.siemens.com/
http://www.omg.org/spec/ReqIF/
https://webstore.iec.ch/publication/5521
https://github.com/

LDRA

Apache Subversion
https://subversion.apache.org/

QBS Serena PVCS Version Manager
https://www.gbssoftware.com/serena-pvcs-version-manager_pvcsvm

Industrial Safety starts with IEC/UL 60730 Standards.pdf by NXP
https://www.nxp.com/files-static/training_pdf/vFTFog_AZ125.pdf

Cypress: AN89056 - PSoC® 4 - IEC 60730 Class B and IEC 61508 SIL Safety Software Library
https://www.cypress.com/documentation/application-notes/an89o56-psoc-4-iec-60730-class-b-and-
iec-61508-sil-safety-software

Functional safety with 32-but microcontrollers
https://www.microchip.com/design-centers/32-bit/functional-safety

LDRA Technology Inc.
2540 King Arthur Blvd, Suite 228
Lewisville, Texas 75056

United States

Tel: +1 (855) 855 5372

LDRA Technology Pvt. Ltd.
Unit No B-3, 3rd floor Tower B,

Golden Enclave. HAL Airport Road

02/80 0°ZA 0££09 H3| Y3m 3uepiodde uj sasueldde pjoyasnoy

bsi. “\ 150 I — LDRA UK & Worldwide Bengaluru
as 22&1:2015 T“d e e Portside, Monks Ferry, 560017
v Management AR Wirral, CH41 5LH India
Tel: +44 (0)151 649 9300 Tel: +91 80 4080 8707

FM 26376 e-mail: india@ldra.com

LDRA Ltd 30 Household appliances in accordance with IEC 60730

http://www.ldra.com
mailto:mailto:info%40ldra.com?subject=
mailto:india@ldra.com
https://subversion.apache.org/
https://www.qbssoftware.com/serena-pvcs-version-manager_pvcsvm
https://www.nxp.com/files-static/training_pdf/vFTF09_AZ125.pdf
https://www.cypress.com/documentation/application-notes/an89056-psoc-4-iec-60730-class-b-and-iec-615
https://www.cypress.com/documentation/application-notes/an89056-psoc-4-iec-60730-class-b-and-iec-615
https://www.microchip.com/design-centers/32-bit/functional-safety

