

Figure 2: Mapping the capabilities of the LDRA tool suite and complementary tools
to the ISO 13849-1:2015 Simplified V-model

Implementing the Safety-Related Software Specification

The first step in the simplified V-model concerns the definition of a software related specification. The
V-model illustrates the need for this specification to be fully implemented in the system design, for that to
be fully implemented in module design, and so on.

It would be easy to dismiss the task of tracing between the development lifecycle phases as trivial. But
consider, for instance, an unexpected change of requirement imposed by a customer. What is impacted?
Which requirements? What elements of the code design? What code needs to be revised? And which parts
of the software will require re-testing?

LDRA Ltd LDRA tool suite and ISO 13849 Technical Briefing3

������������������
��������������
�	�

�	������� � ���	������� �

Figure 3: Automating Requirements Traceability with the TBmanager component of the LDRA tool suite

The most effective way to ensure that the project is not thrown off course by such eventualities is to
maintain Bidirectional Traceability of Requirements6 to determine that all source requirements have been
completely addressed, that all lower level requirements can be traced to valid source code, and that there
is no source code that is surplus to requirements. For more critical projects adhering to the IEC 61508:2010
lifecycle, bi-directional traceability is specified by that standard as an explicit objective in its Annex A
tables.

A requirements traceability tool alleviates the resulting project management overhead by automatically
maintaining the connections between the requirements, development, and testing artefacts and activities.
Any changes in the associated documents or software code are automatically highlighted such that any re-
testing can be dealt with accordingly (Figure 3).

System & Module Design

Since the system design is based on the software specification, developing it means defining the interfaces
between the software items that will implement the requirements. Many of these software elements will
be created by the project, but some may be brought in from other projects, possibly in the form of third-
party libraries. IEC 61508 highly recommends the use of “trusted/verified software elements”. Note that
many components of the LDRA tool suite are as applicable to legacy code, as they are to code that is newly
written.

If a model-based approach is taken to system design - for example, using MathWorks® Simulink®7, IBM®

Rational® Rhapsody®8, or ANSYS® SCADE Suite®9 then a tool suite that is integrated with the chosen
modelling tools will make the analysis of generate code and traceability to the models far more seamless.

Module design can be built on the foundation of system design, and it specifies algorithms, data
representations, and interfaces between different software units and data structures. Because
implementation depends on module design, it is necessary to verify the module design before the activity
is complete, generally by means of a technical evaluation of the module design as a whole, and verification
of each software unit and its interfaces.

Where the IEC 61508 development lifecycle is applicable, the analogous phase to module design is known
as “Detailed design and development”. In either case, the TBmanager component of the LDRA tool suite
can help by verifying that all aspects of system design are traceable to module design, and vice versa.

Coding

Static Analysis

Static analysis, is a method of assessing the quality of software code by examining the code without
executing it.

Both ISO 13849 (PLr c or d) and IEC 61508 require the use of coding standards, which are rule sets
restricting the use of the chosen language to a preferred subset. In general, coding standards are used
to specify a preferred coding style, aid understandability, apply language usage rules or restrictions, and
manage complexity. The use of a static analysis tool is recommended to ensure that code complies with
the nominated standard in a timely and cost-effective manner.

LDRA Ltd LDRA tool suite and ISO 13849 Technical Briefing4

 6 http://westfallteam.com/Papers/Bidirectional_Requirements_Traceability.pdf Bidirectional Requirements Traceability, Linda Westfall
 7 https://uk.mathworks.com/products/simulink.html
 8 http://www-03.ibm.com/software/products/en/ratirhapfami
 9 http://www.ansys.com/products/embedded-software/ansys-scade-suite

LDRA Ltd LDRA tool suite and ISO 13849 Technical Briefing5

Verification tools such as the TBvision component of the LDRA tool suite largely offer support for a
range of coding standards such as MISRA C and C++, JSF++ AV, HIS, CERT C, and CWE. Beyond the use
of coding standards, automated static analysis can also make other valuable contributions, including
the generation of code quality complexity metrics to help limit the complexity of source code, the
enforcement of structured control flow, and the creation of data and control flow diagrams.

Module Testing

Part 2 of ISO 13849 (“Validation”) is quite explicit in its objectives for module (or “unit”) testing – that is,
for tests which execute a subsection of the code. For example, part 2 (“Validation”) states:

“In general, software can be considered a ‘black box’ or ‘grey box’… and validated by the black- or grey-
box test, respectively.”

In this context, “Black box testing” is a method of software testing that examines the functionality
of an application without peering into its internal structures or workings, whereas in this context,
“Grey box testing” demands some knowledge of the internal structure, which includes access to the
documentation of internal data structures as well as the algorithms used.

Examples of how automated dynamic analysis can aid adherence to ISO 13849 objectives include
“Functional and black-box testing”, “Automated boundary-condition test generation”, “Fault injection
tests” and “Model-driven tests”. Where the IEC 61508 development lifecycle is in use10, more precise
definitions of the type of unit tests to be implemented are provided, such as “Test case execution from
boundary value analysis” and “Structural test coverage (conditions, MC/DC) 100 %” Irrespective of
whether the ISO 13849 or IEC 61508 development lifecycle is specified, extensive support is provided by
the LDRA tool suite for dynamic analysis.

The TBrun component of the LDRA tool suite (Figure 4) provide a graphical user interface for unit test
specification, to present a list of all defined test cases with appropriate pass/fail status. The ability
to automatically create a graphical presentation of control flow graphs, and to create test harnesses,
stub functions, and cover for missing member or global variables means that unit test execution and
interpretation becomes a much quicker and easier process. By extending that process to the automatic
generation of test vectors, the tools can also provide a straightforward means to analyse boundary
values without creating each test case manually. Test sequences and test cases are retained so that they
can be repeated (“regression tested”), and the results compared with those generated when they were
first created.

Figure 4: Test Case Automation with the TBrun component of the LDRA tool suite

In addition to showing that the software functions correctly, dynamic analysis is also used to generate
structural coverage metrics to provide evidence of test completeness and to demonstrate that there is
no unintended functionality. The LDRA tool suite is capable of providing statement, branch and MC/DC
coverage from either unit or system test, on the target hardware platform if required (Figure 5).

10 IEC 61508-3 Annex B Table B.2 – Dynamic analysis and testing

Figure 5: Examples of representations of structural coverage within the LDRA tool suite

Integration

This activity requires the integration and test of software units and/or other elements into ever larger
aggregated items, ultimately verifying that the resulting integrated system behaves as intended.

Once again, for projects required to adhere to the IEC 61508 development lifecycle, the objectives are more

extensive and more precisely defined11, to include “Dynamic analysis and testing”, “Functional and black box
testing”, and ”Model based testing”.

Extensive support is provided by the LDRA tool suite for system integration as defined by either of the
specified development cycles, and the TBrun component of the LDRA tool suite can use exactly the same
mechanisms (and even the same tests) to validate the functionality of software functions in combination, as
it did to test them in isolation. User interfaces allow the test engineer to specify at what point in the call tree
they would like the system to be “stubbed”, giving ultimate control on how the code is exercised.

Integration testing can also be used to demonstrate program behaviour at the boundaries of its input and
output domains and confirms program responses to invalid, unexpected, and special inputs, and again this
is underpinned by dynamic structural coverage analysis as provided by both the unit test and system test
facilities within the LDRA tool suite.

Validation

Validation at the system level requires the manufacturer to confirm that the requirements for the software
have been successfully implemented. Software system testing demonstrates that the specified functionality
exists in the system as it will be deployed, and that performance of the program is as specified.

This brings the narrative back to the earlier discussion of requirements traceability tools, such as the
TBmanager component of the LDRA tool suite. A requirements traceability tool automatically maintains
the connections between the requirements, development, and testing artefacts and activities. In short
such a traceability tool ensures that requirements are correctly implemented at all times throughout the
development lifecycle. System validation remains necessary, but will consist of providing evidence that
requirements are fulfilled rather than checking to see whether they are.

LDRA Ltd LDRA tool suite and ISO 13849 Technical Briefing6

 11 IEC 61508-3 Annex A Table A.5 – Software design and development – Software module testing and integration

The Connected System – a New Significance for System Maintenance

For any connected systems, requirements don’t just change in an orderly manner during development.
They change without warning - whenever some smart Alec finds a new vulnerability, develops a new hack,
or compromises the system. And they keep on changing throughout the lifetime of the device.

For that reason, the ability of next-generation automated management and requirements traceability tools
and techniques to create relationships between requirements, code, static and dynamic analysis results,
and unit- and system-level tests is especially valuable for connected systems. Even after product release,
they present a vital competitive advantage in the ability to respond quickly and effectively whenever
security is compromised. The handling of such change is highlighted by both ISO 13849 and IEC 61508

development lifecycle, where the objectives are more extensive and more precisely defined12.

Many software modifications will require changes to the existing software functionality – perhaps with
regards to additional utilities in the software. In such circumstances, it is important to ensure that any
changes made or additions to the software do not adversely affect the existing code.

The TBmanager component of the LDRA tool suite helps alleviate this concern by automatically
maintaining the connections between the requirements, development, and testing artefacts.
activities, and highlighting where rework is required (Figure 6).

LDRA Ltd LDRA tool suite and ISO 13849 Technical Briefing7

 12 IEC 61508 Table A.8 – Software design and development –Software module testing and integration

Figure 6: Showing functions requiring retest with a red “spot” in the TBmanager com-
ponent of the LDRA tool suite

Conclusions

ISO 13849 is a functional safety standard that can be used across a wide range of machinery and
industrial sectors. With its many sections, clauses and sub-clauses, it may at first seem intimidating, and
its extensive referencing to other standards such as IEC 61508 for more critical applications can make it
difficult to follow.

However, once broken down into digestible pieces, its principles offer sound guidance in the establishment
of a high quality software development process, from conception into maintenance and beyond. Such a
process is paramount for the assurance of true reliability, quality, safety and effectiveness of machinery.
When supported by a complementary and comprehensive suite of tools for analysis and testing, it can
smooth the way for development teams to work together to effectively develop and maintain even large
projects with confidence in their quality.

LDRA Ltd LDRA tool suite and ISO 13849 Technical Briefing8

 LD
R

A
 tool suite and ISO

 13849 Technical B
riefing v2.0 09/18

www.ldra.com
LDRA Technology

2540 King Arthur Blvd, 3rd Floor, 12th Main, Lewisville, Texas 75056
Tel: +1 (855) 855 5372
e-mail: info@ldra.com

LDRA UK & Worldwide
Portside, Monks Ferry,
Wirral, CH41 5LH, UK

Tel: +44 (0)151 649 9300
e-mail: info@ldra.com

LDRA Technology Pvt. Ltd.
Unit B-3, Third floor Tower B, Golden Enclave

HAL Airport Road, Bengaluru 560017
Tel: +91 80 4080 8707

e-mail: india@ldra.com

