
IEC 61508: Know your SILs from your elbow

Working with the programmable electronic
components sector

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

LDRA Ltd IEC 61508: Know your SILs from your elbow1

* Registration required to download the document

Software Technology

Technical Briefing

http://www.ldra.com

Introduction

With recent advances in automation, software is no longer a bit-part contributor to electro-mechanical
systems but is now the underlying technology providing functional safety for products in many market
segments. The requirement for software functional safety has therefore become a critical topic in
industrial automation, transportation, nuclear energy generation and other markets. IEC 61508:2010
“Functional safety of electrical/electronic/programmable electronic safety-related systems” is widely
accepted as a reference standard. The generic nature of IEC 61508 makes it an ideal “blank canvas” for
the seamless integration of application dependent factors, and hence the derivation of industry and
sector specific standards.

This briefing describes the key software development and verification process requirements of the IEC
61508 standard and how automated tools such as the LDRA tool suite® and its component parts can
assist with meeting them. It is structured to mirror the flow suggested by the V-model described by the
standard.

Safety Integrity Levels

Embedded software developers will be primarily concerned with part 3 of IEC 61508:20101, “Software
Requirements”. However, the level of effort required to complete each objective in the standard is
dependent on the Safety Integrity Level (or “SIL”) of the safety functions implemented by the system.
The derivation of the SIL is covered in more detail in part 52 of the standard, “Examples of methods for
the determination of safety integrity levels”.

Annex A of that standard discusses the concept of “Necessary risk reduction”3. Tolerable risk is
dependent on such as the severity of injury, the number of people exposed to danger, and the frequency
and duration of that exposure.

The standard goes on to define Safety Integrity as “… the probability of a safety-related system
satisfactorily performing the required safety functions under all the stated conditions within a stated
period of time”4. “Systematic Safety Integrity” is the subsection concerning software applications.

The SIL assigned to each safety function therefore depends the probability of failure, which can be
derived in several different ways. The higher the probability of failure, the higher the SIL (from SIL 1 to
SIL 4), and the more demanding the overheads on software development to make the risk acceptable.

The Software Development Lifecycle

Figure 1 shows the V-model illustration from the standard, superimposed with an illustration of how the
LDRA tool suite and other complementary tools can be applied within the process.

IEC 61508 is not only a stand-alone standard. It also forms the basis for complete, industry-specific
derivative standards such as ISO 262625 for the automotive industry, and is also frequently referenced
piecemeal when its generic objectives are applicable to more narrowly defined sectors. One such
example is the IEC 13849:2015 for control system software, which defers to the development cycle of IEC
61508 for the most critical applications it describes.

Part 3 of the standard, “Software Safety Lifecycle Requirements”, structures the development of the
software in defined phases and activities to reflect and subdivide the phases illustrated in this V-model
diagram. There are also 7 Annexes defined in IEC 61508:2010-3 which are referenced by the main body of
the standard. Annex A is discussed in the body of this paper.

1 IEC 61508:2010-3, Functional safety of electrical/electronic/programmable electronic safety-relatedsystems – Part 3: Software Requirements
2 IEC 61508:2010-5, Functional safety of electrical/electronic/programmable electronic safety-relatedsystems – Part 5: Examples of methods for the

determination of safety integrity levels
3 IEC 61508:2010-5, Annex A, Section A.2, “Necessary risk reduction”
4 IEC 61508:2010-5, Annex A, Section A.4 - Safety Integrity
5 ISO 26262:2011, Road vehicles – Functional safety

LDRA Ltd IEC 61508: Know your SILs from your elbow2

Figure 1: Mapping the capabilities of the LDRA tool suite and complementary tools to the IEC 61508:2010
development lifecycle (the V-model)6

IEC 61508:2010-3 Section 7.2: “Software safety requirements specification”

The first step in the IEC 61508:2010 V-model concerns the definition of a software safety requirements
specification. Section 7.2 highlights the objectives associated with the specification of software safety
requirements. These include the derivation of requirements for the software safety functions, the
software systematic capability, and the implementation of the required safety functions.

The V-model illustrates the need for each step in the process to be traceable to the next, as implied by
the verification arrows during the lifecycle, and the validation step at its end. Bi-directional traceability is
specified as an explicit objective in the Annex A.1 table.

Achieving a format that lends itself to bi-directional traceability will help to achieve compliance with
the standard. Bigger projects, perhaps with contributors in geographically diverse locations, are
likely to benefit from an application lifecycle management tool such as IBM® Rational® DOORS®7,
Siemens®, Polarion® PLM®8, Jama Connect™9, or more generally, similar tools offering support for
standard Requirements Interchange Formats10. Smaller projects can cope admirably with carefully
worded Microsoft® Word® or Microsoft® Excel® documents, written to facilitate links up and down the
development process model.

Bi-directional traceability

It would be easy to dismiss the task of tracing between the development lifecycle phases as trivial, but
their combined effect on project management overhead can be significant.

LDRA Ltd IEC 61508: Know your SILs from your elbow3

 6 Based on IEC 61508:2010-3 Figure 6 – Software systematic capability and the development lifecycle (the V-model)
 7 http://www-03.ibm.com/software/products/en/ratidoor
 8 https://polarion.plm.automation.siemens.com/
 9 https://www.jamasoftware.com
10 http://www.omg.org/spec/ReqIF/

http://www-03.ibm.com/software/products/en/ratidoor
https://polarion.plm.automation.siemens.com/
https://www.jamasoftware.com
http://www.omg.org/spec/ReqIF/

LDRA Ltd IEC 61508: Know your SILs from your elbow4

For instance, consider an unexpected change of requirement imposed by a customer. What is impacted?
Which requirements? What elements of the code design? What code needs to be revised? And which parts
of the software will require re-testing?

In general terms, the most effective way to ensure that any project is not thrown off course by such
eventualities is to maintain Bidirectional Traceability of Requirements11 (Figure 2) to confirm that all outline
requirements have been completely addressed, that all detailed requirements can be traced to outline
requirements, and that there are spurious work products that are surplus to requirements.

IEC 61508 demands adherence to this principle.

Figure 2: An Illustration of the principles of
Bidirectional Traceability

Requirements rarely remain unchanged
throughout the lifetime of a project, and that can
turn the maintenance of the resulting traceability
matrix into an administrative nightmare.
Furthermore, connected systems extend that
headache into the maintenance phase, requiring
revision whenever a vulnerability is exposed.

Automating the tracing of requirements alleviates
this concern by automatically maintaining the connections between the requirements, development,
and testing artefacts and activities. Any changes in the associated documents or software code are
automatically highlighted such that any consequential re-testing can be dealt with accordingly (Figure 3).

Figure 3: The Uniview graphic from the TBmanager® component of the LDRA tool suite, showing how the
relationships between tests and requirements can be configured

11 http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf Bidirectional Requirements Traceability, Linda Westfall

http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf

LDRA Ltd IEC 61508: Know your SILs from your elbow5

IEC 61508:2010-3 Section 7.3: “Validation plan for software aspects of system safety”

This section of the standard is focused on the planning of when, where, how and by whom verification
and validation activities are to be carried out, as they relate to system safety. It requires consideration of
whether these activities are to be manually or automatically implemented, but the more detailed definition of
requirements for the tools themselves are not considered until later in the lifecycle.

IEC 61508:2010-3 Section 7.4.3: “Requirements for software architecture design”

This section references tables that specify where fault detection techniques need to be implemented as part
of the software architecture, such as fault detection, error detection and failure assertion programming.
These techniques are designed to highlight failures, thus providing the basis for counter-measures in order
to minimize their consequences.

Static analysis techniques can be used to confirm that these sound design objectives are reflected in the
code. Examples include Structured Programming Verification (used to identify unstructured code which may
lead to erroneous behaviour of the application) and the generation of complexity metrics such as Cyclomatic
Complexity and Halstead’s metrics (used to help determine the software module size, software complexity
and the data flow information). This confirmation of implemented objectives also reflects the need for
bidirectional traceability as highlighted in IEC 61508:2010-7 Section C.2.11 “Traceability”.

IEC 61508:2010-3 Section 7.4.4: “Requirements for support tools, including programming
languages”

This section discusses the selection of the programming language(s) to be used and the associated tool
chain for the development of that code, including verification and validation tools (section 7.4.4.2), static
code analysers, test coverage monitors and configuration management tools.

IEC 61508:2010-7 Section C.4.5 “Suitable programming languages” recommends that “The programming
language chosen should lead to an easily verifiable code with a minimum of effort and facilitate program
development, verification and maintenance.”

Features which make verification difficult and therefore should be avoided include recursion, any type of
dynamic variables or objects, and multiple entries or exits of loops, blocks or subprograms.

Static analysis techniques provide automated facilities to check compliance with the programming standards
such as MISRA and CERT C which are designed to prevent the introduction of vulnerabilities or latent errors
in source code. Such coding standards usually explicitly disallow the use of the programming features
identified above, and adherence to these coding standards can be checked automatically (Figure 4).

Figure 4: Adherence to coding standards” guidelines can be checked automatically
by LDRA’s static analysis tools

Table A.3 from IEC 61508-3 Annex A12 references the need for “certified tools and translators”. In most cases,
the most cost effective approach is to use a tool that is already approved for the applied standard by an
appropriate TÜV certifying organization.

12 IEC 61508:2010-3 Annex A, Table A.3, Software design and development – support tools and programming language

LDRA Ltd IEC 61508: Know your SILs from your elbow6

13 MISRA C:2012: Guidelines for use of the C language in critical systems, ISBN 978-906400-11-8 (PDF), March 2013
 14 MISRA C++:2008 - Guidelines for the use of the C++ language in critical systems, ISBN 978-906400-04-0 (PDF), June 2008.
 15 SEI CERT C Coding Standard, https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
 16 JSF++ AV, JOINT STRIKE FIGHTER AIR VEHICLE C++ CODING STANDARDS FOR THE SYSTEM DEVELOPMENT AND DEMONSTRATION PROGRAM,

Document Number 2RDU00001 Rev C, 2005
.

IEC 61508:2010-3 Section 7.4.5: “Requirements for detailed design and development –
software system design”

This section of the standard specifies design and coding standard enforcement measures pertinent to the
source code, including “completeness with respect to software safety requirements specification” and
“correctness with respect to software safety requirements specification”.

The “Completeness” and “Correctness” are both reflections of the overriding for bidirectional traceability,
and that is most easily managed through the application of a requirements traceability tool. The complexity
of application code design can be compared with the complexity of implementation, using static analysis
to generate industry standard metrics, and industrial coding standards including MISRA C:201213, MISRA
C++:200814, SEI CERT C15, and JSF++ AV16 are designed to limit the use of constructs most likely to introduce
such as common cause failure and unpredictability.

IEC 61508:2010-3 Section 7.4.6: “Requirements for code implementation”

This is a short section, mostly consisting of an emphasis for the need for traceability. Best practise dictates
that static and dynamic analysis of the code is an ongoing process while the code is being developed, and so
the code implementation process is interwoven with module and integration testing, as well as ongoing static
analysis.

IEC 61508:2010-3 Section 7.4.7: “Requirements for software module testing” and Section 7.4.8:
“Requirements for software integration testing”

These sections identify methods designed to contribute to the achievement of software safety. The
combination of code review and software module testing verifies that a software module satisfies its
associated specification, and again the standard calls for “completeness” and “correctness” in that regard.

Although module testing can be performed by writing custom code for the purpose, the use of a certified,
proven test tool is likely to be much more cost effective unless the code base is very small. Such a tool can
automatically generate test drivers and harnesses (wrapper code) with no extra coding or scripting required,
enabling tests to be easily and efficiently run on code units (Figure 5). These tests can be subsequently
regressed, with clear maintenance tracking and seamless storage of test data and results.

Figure 5: Performing requirement based unit-testing using the TBrun® component of the LDRA tool sui

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

IEC 61508:2010-3 Section 7.5: “Programmable electronics integration (hardware and software)”

It is necessary for the integrated software to be proven on the target programmable electronic hardware
to ensure compatibility and to meet the requirements of the intended safety integrity level, The standard
requires that both functional and “black box” tests are performed to check the dynamic behaviour under
real functional conditions

Structural code coverage analysis can be supported by unit test, system test, or a combination of the two,
operating in tandem (Figure 6). For instance, a preferred approach might be to use dynamic system test
to generate coverage of most of the source code, and to supplement it using unit tests to exercise code
constructs which are inaccessible during normal operation.

To complete the structural coverage analysis, boundary values could be provided manually or generated
automatically to check the permissible and inadmissible ranges.

Figure 6: Examples of representations of structural coverage within the LDRA tool suite

IEC 61508:2010-3 Section 7.4.6: “Requirements for code implementation”

Aside from emphasizing the need for bi-directional traceability, this section is largely a stub, cross-refer-
encing to other sections of the standard.

IEC 61508:2010-3 Section 7.7: “Software aspects of system safety validation”

This section details how it is to be confirmed that the integrated system complies with the software safety
requirements specification at the required safety integrity level.

During development, automated unit and system testing can be used to confirm that the functions of a
system or program behave as the specification dictates. The associated configuration files can be re-used
for regression analysis to confirm ongoing adherence to the specified requirements, and hence fulfil the
requirements of this validation phase. Automated requirements tracing complements this approach by
providing forward and backward traceability between the software safety requirements specification and
software safety validation plan.

IEC 61508:2010-3 Section 7.8: “Software modification”

Section 7.8 describes how modifications are to be handled, to ensure that the resulting software as a
whole retains the quality of the original.

LDRA Ltd IEC 61508: Know your SILs from your elbow7

Impact Analysis is a technique used to determine whether a change or an enhancement to a software
system has affected, or has the potential to affect, the existing system. When a change is made and impact
analysis is complete, the extent of the re-verification required will be influenced by the number of software
modules affected, the criticality of the affected software modules and the nature of the change. Possible
decisions are

• Only the changed software module is re-verified
• All affected software modules are re-verified, or
• The complete system is re-verified

Clearly such re-verification is much easier to arrange if the tests for the existing tests are stored, and re-
gression test can be automated.

The connected system – a new significance for system modification

With the advent of the connected device and the Internet of Things, system maintenance takes on a new
significance. For any connected systems, requirements don’t just change in an orderly manner during
development. They change without warning - whenever some smart Alec finds a new vulnerability,
develops a new hack, or compromises the system. And they keep on changing throughout the lifetime of
the device.

For that reason, the ability of next-generation automated management and requirements traceability tools
and techniques to create relationships between requirements, code, static and dynamic analysis results,
and unit- and system-level tests is especially valuable for connected systems. Linking these elements
already enables the entire software development cycle to become traceable, making it easy for teams to
identify problems and implement solutions faster and more cost effectively. But they are perhaps even
more important after product release, presenting a vital competitive advantage in the ability to respond
quickly and effectively whenever security is compromised.

Many software modifications will require changes to the existing software functionality – perhaps with
regards to additional utilities in the software. In such circumstances, it is important to ensure that any
changes made or additions to the software do not adversely affect the existing code.

A requirements traceability tool can help to alleviate this concern by automatically maintaining the
connections between the requirements, development, and testing artefacts and activities. In the
example shown in, suppose that a change is proposed to the System Level requirement “Installation and
configuration”. The traceability established at development time between requirements, code and tests
mean that the tool can show which parts of the code are impacted by the proposed change, as highlighted
in the example.

Figure 7: Identifying the impact of requirements change with the TBmanager component
of the LDRA tool suite

LDRA Ltd IEC 61508: Know your SILs from your elbow8

LDRA Ltd IEC 61508: Know your SILs from your elbow9

In this scenario, the existing code as launched will also have undergone quality control measures in ac-
cordance with the IEC 61508 standard such as static analysis to assess whether coding standards have
been met, and unit tests to confirm functionality of each code module.

In the example shown in Figure 19, a system has been subject to a change request for the “Add products”
requirement. Those parts of the system which are potentially affected by the change are easily identified
by means of a red dot, whereas unaffected functions carry a green dot.

Regression Analysis feature can then be used to verify whether the newly introduced or modified modules
have only affected the functionality of the existing system as intended, or the complete system can be re-
validated.

IEC 61508:2010-3 Section 7.9: “Software verification”

Figure 8 is a reproduction of IEC 61508-3 Table A.9 from the standard, which refers to IEC 61508-3 Section
7.9 “Software verification” and IEC 61508-7 Section C.2 “Requirements and detailed design”.

IEC 61508-3 Section 7.9 considers generic aspects of verification common to several safety lifecycle
phases.

Technique/Measure Ref SIL

1 2 3 4

1 Formal proof C.5.12 --- R R HR

2 Animation of specification and design C.5.26 R R R R

3 Static analysis
B.6.4

Table B.8
R HR HR HR

4 Dynamic analysis and testing
B.6.5

Table B.2
R HR HR HR

5
Forward traceability between the software
design specification and the software
verification (including data verification) plan

C.2.11 R R HR HR

6
Backward traceability between the software
verification (including data verification) plan and
the software design specification

C.2.11 R R HR HR

7 Offline numerical analysis C.2.13 R R HR HR

Software module testing and integration See Table A.5

Programmable electronics integration testing See Table A.6

Software system testing (validation) See Table A.7

”HR” The method is highly recommended for this SIL.
“R” The method is recommended for this SIL.
“--- “ The method has no recommendation for or against its usage for this SIL.

Figure 8:Copy of IEC 61508-3 Table A.917, with techniques and measures supported
by the LDRA tool suite highlighted

17 IEC 61508-3 Annex A Table A.9 – Software Verification

LDRA Ltd IEC 61508: Know your SILs from your elbow9

Conclusions

With its many sections, clauses and sub-clauses, IEC 61508 may at first seem intimidating, and its system
of cross-referencing tables in annexes can make it difficult to follow. However, once broken down into
digestible pieces, its principles offer sound guidance in the establishment of a high quality software
development process - not only leading up to initial product release but into maintenance and beyond.
Such a process is paramount for the assurance of true reliability, quality, safety and effectiveness of
programmable electronic components. When supported by a complementary and comprehensive suite of
tools for analysis and testing, it can smooth the way for development teams to work together to effectively
develop and maintain large projects with confidence in their quality.

IEC 61508: Know
 your S

ILs from
 your elbow

 v2.0 11/18

www.ldra.com

LDRA UK & Worldwide
Portside, Monks Ferry,

Wirral, CH41 5LH
Tel: +44 (0)151 649 9300

e-mail: info@ldra.com

LDRA Technology Inc.
2540 King Arthur Blvd, Suite 228

Lewisville, Texas 75056
United States

Tel: +1 (855) 855 5372
e-mail: info@ldra.com

LDRA Technology Pvt. Ltd.
Unit No B-3, 3rd floor Tower B,

Golden Enclave. HAL Airport Road
Bengaluru

560017
India

Tel: +91 80 4080 8707
e-mail: india@ldra.com

