
An introduction to red-hot ASPICE
compliant software development

Working with the Automotive Industry to meet the challenges of
achieving cost-effective Automotive SPICE* compliance

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilized without company approval.

*Software Process Improvement and Capability dEtermination

LDRA Ltd An introduction to ASPICE1

Software Technology

Technical Briefing

Background

There is an ever-widening range of automotive electrical and/or electronic (E/E/PE) systems such as
adaptive driver assistance systems, anti-lock braking systems, steering and airbags. Their increasing levels
of integration and connectivity provide almost as many challenges as their proliferation, with non-critical
systems such as entertainment systems sharing the same communications infrastructure as steering,
braking and control systems. The net result is a necessity for exacting development processes, from
requirements specification, design, implementation, integration, verification, validation, and through to
configuration.

In response to these challenges, Automotive SPICE (Software Process Improvement and Capability
dEtermination) was developed 2001 by the AUTOSIG (Automotive Special Interest Group). This group
consists of the SPICE User Group1, the Procurement Forum, and automotive constructors including Audi,
BMW, Daimler, Fiat, Ford, Jaguar, Land Rover, Porsche, Volkswagen, and Volvo.

Such concerns are not unique to the automotive sector, and AUTOSIG were able to draw on an earlier body
of work. ISO/IEC 15504 (known as SPICE) was developed in response to the associated challenges, pre-
released in 1998 as technical report, and emerged as a set of international standards in 2003/4.

The concept of the Capability Maturity Model (CMM) is central to the standard, consisting of a set of
structured levels that describe how well the behaviours, practices and processes of an organization can
reliably and sustainably produce required outcomes. ISO/IEC 15504 is the reference model for the maturity
models against which the assessors can place the evidence that they collect during their assessment,
so that the assessors can give an overall determination of the organization’s capabilities for delivering
products (software, systems, and IT services).

The practices and processes defined within the standard align with the eight primary software verification
tasks supported by the LDRA tool suite: traceability verification and process standard objective
management, static analysis (design, code and quality reviews), unit testing, target testing, test
verification (code coverage) and test management. Focus on all of these key areas is required to achieve an
organization’s software development and maintenance goals.

1 https://www.iso.org/organization/10184.html

LDRA Ltd An introduction to ASPICE2

Figure 1: Mapping the capabilities of the LDRA tool suite and complementary tools to
Automotive SPICE 3.1 PAM Figure D.4, “Bidirectional traceability and consistency”

Figure 1 is taken from the standard and represents a lifecycle that can be summarized by reference to six
software engineering processes (SWE).

SWE.1 Software Requirements Analysis
The purpose of the software requirements analysis process is to transform the software related parts of the
system requirements into a set of software requirements.

The products of this phase potentially include CAD drawings, spreadsheets, textual documents and
many other artefacts, and clearly a variety of tools can be involved in their production. Automating the
management of the status of each of those elements and maintaining traceability between them and
subsequent phases can address a project management headache (Figure 2).

The ideal tools for requirements management depends largely on the scale of the development, and each
can be integrated with the LDRA tool suite. If there are few developers in a local office, a simple spreadsheet
or Microsoft Word document may suffice. Bigger projects, perhaps with contributors in geographically
diverse locations, are likely to benefit from an Application Lifecycle Management (ALM) tool such as IBM®
Engineering Requirements Management DOORS® Family2 or Siemens Polarion ALM3.

SWE.2 Software Architectural Design
The purpose of the software architectural design process is to establish an architectural design and to
identify which software requirements are to be allocated to which elements of the software, and to evaluate
the software architectural design against defined criteria.

There are many tools available for the generation of the software architectural design, with graphical
representation of that design an increasingly popular approach. Appropriate tools include those exemplified
by IBM® Engineering Systems Design Rhapsody®4, MathWorks Simulink5 and Ansys SCADE Suite6.

LDRA Ltd An introduction to ASPICE3

Figure 2: Traceability in the LDRA tool suite. The example detailed design is linked
upstream to software safety requirements and downstream to software units.

 2 IBM Engineering Requirements Management DOORS Family https://www.ibm.com/uk-en/products/requirements-management
  3 Siemens Polarion ALM https://polarion.plm.automation.siemens.com/
 4 IBM Engineering Systems Design Rhapsody - Developer https://www.ibm.com/uk-en/products/uml-tools
 5 MathWorks Simulink https://www.mathworks.com/products/simulink.html
 6 Ansys SCADE Suite https://www.ansys.com/en-gb/products/embedded-software/ansys-scade-suite

SWE.3 Software Detailed Design and Unit Construction
The purpose of the software detailed design and unit construction process is to provide an evaluated
detailed design for the software components and to specify and to produce the software units.

The techniques suggested in the standard can be justified on the basis that they make the resulting
code more reliable, less prone to error, easier to test, and/or easier to maintain. For example, language
subsets such as MISRA C restrict the use of a programming language to those elements known to be least
susceptible to causing problems (Figure 3).

Figure 3: Highlighting violated coding rules and guidelines in the LDRA tool suite

Bidirectional traceability between software detailed design and software units is a key requirement of the
standard. Automating that traceability reduces both management overhead and the potential for error,
particularly when unanticipated changes arise. In such circumstances, impact analysis reports help to
quantify the overhead associated with such changes and ensure that they are implemented in full (Figure 4).

Figure 4: Impact analysis report generated by the LDRA tool suite

SWE.4 Software Unit Verification
The purpose of the software unit verification process is to verify software units to provide evidence for
compliance of the software units with the software detailed design and with the non-functional software
requirements.

Each developed software unit needs to be tested with reference to the software detailed design. Test
procedures then need to be authored, reviewed, and executed to ensure the software unit does not contain
any undesired functionality. Unit tests can then be executed on the target hardware and/or simulated
environment. Once the test procedures are executed, actual outputs are captured and compared with the
expected results. Pass/Fail results are then reported and requirements are verified accordingly.

The LDRA tool suite automates the unit test process by exposing the software interface at the function
scope allowing the user to enter inputs and expected outputs. The tool suite then generates a test harness,
which is compiled and executed on the target hardware. Actual outputs are captured, along with structural
coverage data, and then compared with the expected outputs specified in the test cases (Figure 5).

Should changes become necessary – perhaps as a result of a failed test, or in response to a requirement
change - then all impacted tests would need to be re-run (regression tested). These regression tests can be
automated and systematically re-applied as development progresses to ensure that new functionality does
not compromise any that is established and proven.

Bidirectional traceability between software detailed design and the unit test specification is a key
requirement of the standard. Automated traceability and the provision of associated reporting reduces both
management overhead and the potential for error, particularly when unanticipated changes arise (Figure 6).

LDRA Ltd An introduction to ASPICE4

Figure 5: Automation of unit test using the LDRA tool suite

Figure 6: Detailed traceability report generated by the LDRA tool suite

Software test and model based development
These static and dynamic analyses can be integrated with several different model based development tools,
such as IBM Engineering Systems Design Rhapsody, MathWorks Simulink, and Ansys SCADE Suite. The
development phase itself involves the creation of the model in the usual way, with the integration becoming
more pertinent once source code has been auto generated from that model.

Model based development offers many advantages to developers of automotive software and many
modelling tools include integrated model and auto-generated code testing features. However, an
automated approach to testing that is integrated with the modelling tool and yet independent from it helps
to offset concerns relating to systemic faults.

Figure 7 illustrates one example of how an integration with IBM Engineering Systems Design Rhapsody
can be deployed using an approach appropriate for use with “back-to-back” testing. Design models
are developed with Rhapsody and verified with Rhapsody Test Conductor. Then, code is generated from
Rhapsody, instrumented by the LDRA tool suite, and executed in Software In the Loop (SIL or host), or
Processor In the Loop (PIL or target) mode. Structural coverage is then collected and structural coverage
reports can be generated at the source code level.

LDRA Ltd An introduction to ASPICE5

Figure 7: Generating structural coverage data of auto generated code with
IBM Engineering Systems Design Rhapsody and the LDRA tool suite

The generated source code can be analysed statically to ensure compliance with an appropriate coding
standard, such as MISRA C:2012 Appendix E7. Additional dynamic testing can be performed at the source
level from within the LDRA tool suite. Requirements based tests can be created to verify functionality and
collate structural coverage. Test data can also be imported from Simulink and used to migrate test data to
the LDRA tool suite for efficiency.

Real time embedded systems based on auto generated code usually also include some level of conventionally
written code. Software for board support packages, interrupt handlers, drivers, and other lower-level code
is typically hand coded. Legacy code is almost always part of deployed systems. These portions of the
system can be verified using traditional methods using the LDRA tool suite alongside auto-generated code.

SWE.5 Software Integration and Integration Test
The purpose of the software integration and integration test process is to integrate the software units into
larger software items up to a complete integrated software consistent with the software architectural design
and to ensure that the software items are tested to provide evidence for compliance of the integrated
software items with the software architectural design, including the interfaces between the software units
and between the software items.

LDRA static analysis tools contribute to the verification of the design by means of the control and data
flow analysis of the code derived from it, providing graphical representations of the relationship between
code components for comparison with the intended design (Figure 8). A similar approach can also be used
to generate a graphical representation of legacy system code, providing a path for additions to it to be
designed and proven in accordance with ASPICE principles.

LDRA Ltd An introduction to ASPICE6

 7 https://www.misra.org.uk/tabid/72/Default.aspx

IBM®

Rhapsody®
IBM®

Rhapsody®

LDRA Ltd An introduction to ASPICE7

Figure 8: Diagrammatic representations of control and data flow generated from source code by the LDRA
tool suite aid verification of software architectural design

Integration testing is designed to ensure that when the units are working together in accordance with the
software architectural design, they meet the related specified requirements. It is desirable for all dynamic
testing to use environments that correspond closely to the target environment and hence test dependencies
between hardware and software.

Within the LDRA tool suite, unit tests become integration tests as units are tested as part of a call tree,
rather than in isolation. Exactly the same test data can be used to validate the code in both cases.

The inputs and expected outputs defined in the test cases are typically derived from requirements to ensure
intended functionality is verified. Various other forms of tests including negative tests, fault injection and
robustness tests are available using the same mechanism.

The analysis of boundary values can be automated using an “extreme test” facility to automatically
generate a series of unit test cases. The same facility also provides a facility for the definition of
equivalence boundary values such as minimum value, value below lower partition value, lower partition
value, upper partition value and value above upper partition boundary. Features like automated stub
management, global variable declarations, and exception handling help to complete a comprehensive unit
test facility.

SWE.6 Software Qualification Test
The purpose of the Software Qualification Test Process is to ensure that the integrated software is tested to
provide evidence for compliance with the software requirements.

The sequential nature of the process defined by ASPICE can seem simplistic at first sight. In theory, if the
V-model is adhered to, then the requirements will never change, each phase will follow in sequence, and
tests will never throw up a problem.

Consider what happens if there is a code change in response to a failed integration test, or where there is
a change in a customer requirement. Such scenarios can quickly lead to situations where the traceability
between the products of software development falls down if the integrity of each development phase
and the artefacts generated by them are not maintained. A sequence of similar issues can ultimately lead
to a situation where the completed project does not fulfil functional, functional safety, or cybersecurity
requirements.

LDRA Ltd An introduction to ASPICE8

For that reason, ASPICE incorporates the principle of bidirectional traceability, requiring ongoing
maintenance and integrity of the artefacts generated by each phase of the development lifecycle.
Adherence to this principle ensures not only that the delivered system accurately reflects the requirements
of the stakeholders as confirmed during the software qualification test phase, but also confirms that there
is no superfluous code within the system – important from both a safety and security perspective.

The double headed arrows in Figure 1 represent bidirectional traceability, confirming that each software
“production” phase on the right side of the V accurately and completely reflects the “design” phase that
specified it on the left. Figure 2 illustrates its automation.

Base practices, process attributes, and functional safety

Each of these SWEs is broken down in the standard to a number of base practices (BPs). For example, the
base practices associated with software unit verification are shown in Figure 9.

Figure 9: Base practices associated with software unit verification, as represented in the LDRA tool suite

Clearly the level of thoroughness and expertise applied to each of these activities can vary enormously,
and with it the level of quality assurance. Take, as a further example, the testing of software units (BP4).
The standard expands that a little “Test software units using the unit test specification according to the
software unit verification strategy. Record the test results and logs.”

The standard provides for the assessment of capability levels associated with each of these base processes
(Figure 10).

Figure 10: Capability levels in ASPICE

Any assessment of compliance will look to confirm the completeness of that test specification and the
effectiveness of adherence to it in order to assess an appropriate capability level, but outside that remit
there are decisions to be made relating to the rigour applied to each activity.

The thoroughness of unit test, for example, can vary considerably.
•	 At its most rudimentary level, unit test can consist of the superficial confirmation that each software

function fulfils its functional specification.

•	 A more thorough test would include evidence of code coverage, showing that all code relates to a
requirement and that all requirements are fulfilled by code.

•	 Beyond that, the robustness of the code might be exercised to show that boundary and out of range
values are handled adequately by the code.

•	 Ultimately, object code verification might be deployed to provide evidence that the object code, like
the source code, is also shown to be both pertinent and thoroughly exercised.

Figure 11: Examples of representations of function and call coverage within the LDRA tool suite

Clearly, the more demanding tests would likely apply to a braking system and only the lesser ones to in-car
entertainment. Functional safety issues of this nature are outside the remit of Automotive Spice, but within
the scope of the standard ISO 26262 Second Edition “Road vehicles — Functional safety” which might be
considered complementary to it.

In summary

ASPICE represents best practice in the development of functionally safe automotive software. A key concept
for the standard Capability Maturity Model (CMM) - a set of structured levels that describe how well the
behaviours, practices and processes of an organization can reliably and sustainably produce required
outcomes.

These practices and processes can be represented by a V-model, enhanced by bidirectional traceability to
ensure that each phase of development always accurately reflects the one before it. The development and
validation processes required for each phase are broken down by the standard, but there is no provision in
ASPICE for the variation in thoroughness proportional to the functional safety demanded of an application.
Leveraging ISO 26262 in tandem with ASPICE would address that issue.

LDRA Ltd An introduction to ASPICE9

A
n Introduction to A

S
PICE v2.1 05/21

www.ldra.com

LDRA UK & Worldwide
Portside, Monks Ferry,

Wirral, CH41 5LH
Tel: +44 (0)151 649 9300

e-mail: info@ldra.com

LDRA Technology Pvt. Ltd.
Unit No B-3, 3rd Floor Tower B,

 Golden Enclave, HAL Airport Road,
 Bengaluru

 560017
India

Tel: +91 80 4080 8707
e-mail: india@ldra.com

LDRA Technology Inc.
2540 King Arthur Blvd, Suite 228,

Lewisville, Texas 75056
United States

 Tel: +1 (855) 855 5372
e-mail: info@ldra.com

FM 26376

